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Last time (Ù talk by Christoph Uhlemann)

Bosonic string:
Nambu-Goto and Polyakov action
Mode expansion and Virasoro algebra
Interactions and scattering

Superstrings:
Worldsheet SUSY, spacetime fermions
Type-I and type-II superstring spectrum
Spacetime SUSY

Toroidal compactification:
Circle compactification of the bosonic string
2-Torus compactification and modular invariance
Winding modes and T-duality

D-branes
Chan-Paton factors

Strings↔point particles

From (classical) point particles to strings

Fundamental objects not point
particles, but 1-dim strings
(open/closed)

sweep out ’worldsheet’ during
propagation in target space (flat
Minkowski)

(transversal) vibrational modes
give particle spectrum

analogous to point particle, action ∝ worldsheet area:

S = −T

∫ √
− detGαβ(σ)d

2σ

with worldsheet metric ds2 = Gαβ(σ)dσ
αdσβ, α, β = 1, 2
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String interactions

Path integral is integral over worldsheet geometries, expand as sum
over topologies:

for closed orientable string: compact orientable 2-manifold without
boundary, characterized by genus

Add Einstein-Hilbert term in constant dilaton background:

1

2π

∫
d2σ

√
hRhφ = χ(M) = 2− 2h − p, (Gauß-Bonnet)

giving an overall factor e−χ(M)φ

(
√
hRh in 2-dim total derivative, no effect on dynamics)

⇒ dilaton vev gives coupling constant gs = eφ
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Superstrings

5 consistent Superstring theories:

type IIA
type IIB

SO(32)

type I

11d 

SUGRA

E8XE8

type I: open+closed strings, N = 1
type IIA/B: closed strings, N = 2, non-chrial/chiral
heterotic: 1/2 worldsheet susy, N = 1 in spacetime

gauge groups E8 × E8, SO(32)

(explanation of the spider’s web → january)
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Compactification

Compactification of 26d bosonic string on S1 = R1
/x∼x+2π

Identify X 25 ∼ X 25 + 2πR:

for string to close X 25(σ + π, τ) = X 25(σ + π, τ) + 2πRW ,
winding number W ∈ Z

0 +1 -1

�

X 25(σ, τ) = x25 + l2s p
25τ + 2RWσ . . .

extra σ-term allowed by ’boundary’ condition

translating once around the compact dimension by e i2πRp
25

should leave string in variant: ⇒ p25 = K/R,
Kaluza-Klein excitation K ∈ Z

Note: for open strings only KK - no winding number
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Compactification

D-branes

massive objects describing
p-brane solutions of Supergravity

open strings ending on them
describe fluctuations

break N = 2 to N = 1 (type II)

very massive, would decay into closed-string radiation (by joining
of open strings) unless they carry conserved charge - induced from
R-R sector gauge fields

gauge fields determine which kinds of D-branes are there,
IIA/B: even/odd number of spatial dimensions, more in january...
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Compactification

Chan-Paton factors

Analog (but less fancy) description:
assign label to each end of open string
can be distinguished due to orientation
describe state by λij |φ, i , j〉 n

m

_

calculating an amplitude this results in
δii

′
δjj

′
δkk

′
λ1ijλ

2
j ′kλ

3
k ′i ′ = Tr λ1λ2λ3

invariant under λ→ UλU†, U ∈ U(N)

i.e. we have string transforming under
adjoint of U(N)
giving U(N) gauge theory for ls → 0

m

m
_

n

n

_ll
_

�
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Part I

4d model building
Calabi-Yau compactification
Orbifolds
Flux compactification and moduli stabilization
D-branes and orientifolds



SUSY conditions I: Spinor splitting

Compactifying the 10d N = 2 type-II superstring on a 6-torus yields
(maximal) 4d N = 8 supersymmetry in the effective theory.

Ù no chiral 4d fermions in toroidal compactifications

New approach: Investigate the effective 10d N = 2 type-II SUGRA and
find conditions for 4d minimal supersymmetry.

1 Assume a product space-timeM10 = R1,3 × K 6, where K 6 is some
compact inner space.

Ù 4d Poincaré-invariance: All the fermionic fields must be trivial!
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SUSY conditions II: No-flux restrictions

SUSY variations without R-R fluxes

bosons: All vanish due to the trivial fermionic fields (parity)

gravitino: δεχµ = ∇µε− 1
4Hµνργ[νγρ]ε+ (fermions)2

dilatino: δεϕ = (γµ∇µΦ) ε+ 1
24Hµνργ[µγνγρ]ε+ (fermions)2

One imposes additional simplifications in order to make the SUSY
variations of the fermionic fields vanish:

2 Consider a constant dilaton field Φ = Φ0.
3 Consider a vanishing NS-NS background flux, i.e. H3 = 0.

Ù Dilatino equation automatically satisfied.

Remaining no-flux SUSY variations

gravitino: δεχµ = ∇µε
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SUSY conditions III: Geometric implications

On R1,3 × K 6 the equation ∇µε = 0 splits into two conditions:
1 Constant spinor on R1,3 Ù trivial condition.
2 Covariantly constant, nowhere vanishing spinor on compact space K 6

Ù severe constraints on the metric and topology.

Theorem of Wang
K 6 is Ricci-flat and Kähler.

Berger’s holonomy classification
K 6 has SU(3)-holonomy.


Holonomy:

What could possibly happen to a tangent vector,
when it is parallel transported along a closed loop?




A 6d SU(3)-holonomy manifold is just a Calabi-Yau manifold.
Ù The internal space K 6 must be a Calabi-Yau 3-fold.
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Calabi-Yau compactification I: Basic setup

2

2

6

16

6

2

2

16




In case of the heterotic string,
many more technical subleties
have to be considered.
Ù Embedding of the spin
connection in the gauge de-
grees of freedom




In string theory model building only the massless spectrum is usually
considered. The primary interest is in the associated effective SUGRA
theory obtained by compactification:

Heterotic string theory on CY 3-fold Ù 4d N = 1 het. SUGRA
Type-II string theory on CY 3-fold Ù 4d N = 2 type-II SUGRA

Ù Need to break SUSY further down do N = 1.
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Calabi-Yau compactification II: Effective field content

Problem: Non-trivial CY 3-fold metrics are not explicitly known
Ù only access to topology of the compact space K 6.

Type-IIA on CY 3-fold
h1,1 Abelian vector multiplets
h2,1 + 1 hypermultiplets

Type-IIB on CY 3-fold
h2,1 Abelian vector multiplets
h1,1 + 1 hypermultiplets

[
Hodge numbers:

hp,q := dimR Hp,q
∂̄

(K 6) are the dimensions of the
Dolbeault cohomology groups (c.f. Betti numbers).

]

The massless scalars in those N = 2 multiplets of the effective theory
parameterize the geometric moduli space, which is a product space:

Mgeom(K 6) =M1,1(K 6)×M2,1(K 6).

The expectation values of the massless scalars are determined by the
values of the geometric moduli.
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Calabi-Yau compactification III: Massless scalars & moduli

Number of massless scalars in effective theory
type-IIA Ù 2h1,1 + 4(h2,1 + 1) scalars
type-IIB Ù 2h2,1 + 4(h1,1 + 1) scalars

[
Scalars: An N = 2 hypermultiplet has 4 real scalars,

an Abelian vector multiplet has 2 real scalars

]

Changing the value of the massless scalars does not require any
energy, therefore they may take any value.
Such unconstrained massless scalars give rise to an additional 5th
interaction unobserved in nature.

Ù The scalars have to disappear / be fixed.
But unfortunately in the effective type-II supergravity there is no
potential for the massless scalars...

Ù Moduli stabilization problem
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Compactifications: A preliminary overview

Toroidal compactification:

Very simple to compute using periodic coordinates.
No supersymmetry breaking (N = 8 for type-II)

Ù phenomenologically ruled out

Orbifold compactification:

Computations quite similar to toroidal compactifications
Singular space-time
Breaks supersymmetry to minimal levels (N = 2 for type-II)

Ù need further SUSY breaking

Calabi-Yau compactification:

Breaks supersymmetry to minimal levels (N = 2 for type-II)
Only access to topological data of the internal space
Introduces lots of massless scalars (geometric moduli)

Ù need moduli stabilization and further SUSY breaking

Ù need further ingredients: Fluxes & Dp-branes & orientifolds
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Flux compactification I: Background RR-fluxes

R-R p-forms in type-IIA
opp. chirality: L|+〉 ⊗ |−〉R

Ù C1, C3, C5, C7, C9

R-R p-forms in type-IIB
same chirality: L|+〉 ⊗ |+〉R

Ù C0, C2, C4, C6, C8, C10

NS-NS flux: H3 := dB2 (field-strenth of the NS-NS 2-form)

R-R fluxes: F := dC − H3 ∧ C (formal sum of all even/odd fluxes)

F0 = − ? F10 F1 = dC0

F2 = dC1 F3 = dC2 − H3C0

F4 = dC3 − H3 ∧ C1 F5 = dC4 − H3 ∧ C2

Hodge self-duality constraint: Fn = (−1)b
n
2 c ? F10−n

Bianchi identities: dH = 0, dF − H ∧ F = 0
Basic idea: In the presence of background fluxes, changing the value
of the massless scalars requires energy.

Ù Massless scalars obtain dynamically stabilized values
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Flux compactification II: Geometric implications

In order to break the supersymmetry to minimal levels as before, one
has to consider the SUSY variations of the fields including the R-R
fluxes.

Relevant SUSY variations to first order in ε including R-R fluxes

bosons: Vanish due to trivial fermionic fields

gravitino: δεχµ = ∇µε+ 1
4 /HµPε+ 1

16eΦ
∑

n /F nγµPnε

dilatino: δεϕ =
(
/∂φ + 1

2 /HP
)
ε+ 1

8eΦ
∑

n(−1)n(5− n)/F nPnε

Actually solving the above conditions requires much further
techniques:

Generalized complex geometry Ù Generalized Calabi-Yau manifolds

This deals with one of the two issues mentioned.
Ù Still need to further break SUSY to N = 1.
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D-branes I: Minimal coupling

Open strings can have either
von-Neumann or Dirichlet
boundary conditions. In case of
the latter, their space-time
position is fixed to a
submanifold. Ù Dp-brane.
D-branes are minimally charged
under type-II R-R p-form fields.

Electric coupling
The natural coupling of a
(p + 1)-form to a p-brane is given by

Qp

∫

Wp

Ap+1

Ù electric p-brane with charge Qp

Magnetic coupling
The magnetic dual to the field strength Fp+2 := dAp+1 is defined by the
Hodge dual F̃ := ?F , i.e.

dÃD−p−3 = F̃D−p−2 = ?Fp+2 = ?dAp+1.

Ù magnetic (D − p − 4)-brane with charge Q̃D−p−4.
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D-branes II: Worldvolume actions

Open string excitations induce a U(1)-gauge theory on the
(p + 1)-dimensional Dp-brane-worldvolume Wp, which couples to all
the lower R-R fields Cp+1,Cp−1,Cp−3, . . .

Worldvolume actions of D-branes

Dirac-Born-Infeld: SDBI = −Tp

∫

Wp

e−φ
√
− det(g + B2 + 2πα′F2)

Chern-Simons: SCS =
Tp

2

∫

Wp

C ∧ ch(F2)︸ ︷︷ ︸
coupling

∧

√√√√ Â(RTWp )

Â(RNWp )
︸ ︷︷ ︸

required for gravitational
anomaly cancellation

∣∣∣∣∣
(p+1)-form

[
Tp tension of Dp-brane
F2 worldvolume U(1) gauge field-strength

]

[
Example: C ∧ ch(F2)

∣∣
8-form = C8 +C6 ∧Tr F2 +C4 ∧Tr(F2 ∧ F2) + . . .

]
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D-branes III: Multiple D-branes

Dp-branes in type-IIA
D0 (point particle),
D2, D4, D6, D8

Dp-branes in type-IIB
D(-1) (D-instanton), D1 (D-string),
D3, D5, D7, D9 (space-time)

Open strings can stretch between several D-branes.
A collection of N coinciding Dp-branes is called a stack

Ù the stack’s worldvolume gauge group enhances to U(N).
The branes of a stack can dynamically move apart

Ù gauge symmetry breaking U(N) 7→ U(N1)×U(N2).
Intersecting stacks of branes can be used to generate chiral
fermions. The states resulting from the intersection transform in
the bi-fundamental representation of the stacks’ gauge groups,
i.e. (�a,�b) or (�a, �̄b). Ù bi-fundamental (chiral) matter
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D-branes IV: Global issues

In a compactification scenario R1,3 × K 6 a Dp-brane occupies a
(p − 3)-dimensional submanifold of K 6. In the compact directions the
total charge and tension must cancel. Ù Chiral anomalies[

Recall:
According to the Gauß theorem from classical elec-
trodynamics, the force / field-strength in a compact
volume is determined by the total charge content.

]

Ù Tadpole and consistency conditions.
Introduce anti-Dp-branes: Same geometric properties as ordinary
D-branes, but negative charge.

Ù Charge cancellation using D-branes and anti-D-branes
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Orientifolds I: Worldsheet parity operator

On the type-II closed superstring, the left- and right-moving are
independant of each other except for the level matching (“equal
mass”) condition. Ù N = 2 SUSY
Consider worldsheet orientation-reversing actions.

Worldsheet parity operator ΩP
τ

σ
Action of the worldsheet parity operator
on the worldsheet: ΩP : σ 7→ 2π − σ

Ù reverses worldsheet orientation

Ù Consider the coset spaceM10/(ΩPP).
The action of P on the space-time is usually generated by an
involution ξ, i.e. a mapping ξ :M10 −→M10 where ξ2 = Id.
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Orientifolds II: Orientifolding and O-planes

Orientifolding in type-IIA

action: (−1)FLΩPξ︸ ︷︷ ︸
O6[

holomorphic volume: ξ∗Ω = Ω̄
complex structure: ξ∗J = −J

]

Orientifolding in type-IIB

action: (−1)FLΩPξ︸ ︷︷ ︸
O5/O9

or ΩPξ︸︷︷︸
O3/O7[

holomorphic volume: ξ∗Ω = ±Ω
complex structure: ξ∗J = J

]

The fixpoint set of the
orientifold involution ξ of
the space-time is called an
orientifold plane.
Supersymmetry
considerations restrict the
possible types of O-planes.

Charge and tension of
D-branes and O-planes

D D̄ O+ O−

charge + − − +

tension + + − +

Ù Tension cancellation using O-planes.
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“Bottom up” model building

Example: Orientifolding the (oriented, closed) type-IIB superstring yields
the (unoriented, open/closed) type-I superstring.

Calabi-Yau orientifold model building 1-0-1
1 Calabi-Yau geometry ensures 4d N = 2 supersymmetry.
2 Adding Dp-branes and O-planes breaks SUSY to 4d N = 1 and

provides the means of U(n), SO(n) or Sp(n) gauge theory.
3 Background fluxes can be used to stabilize the moduli.

Ù IIA and IIB model building with 4d N = 1 eff. theories

In principle, we now have all the neccessary tools for perturbative
“bottom-up” 4d model building.

Ù What about the non-perturbative side?
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Part II

Non-perturbative
aspects

Duality web: T-, S- and U-duality
M-theory
F-theory as non-perturbative type-IIB theory



Dualities I: Five superstring theories

Five consistent 10d perturbative superstring theories

I open and closed strings in bulk, SO(32) gauge symmetry

IIA closed strings in bulk, open strings ending on D-branes, non-chiral

IIB closed strings in bulk, open strings ending on D-branes, chiral

HE only closed strings in bulk, E8×E8 gauge symmetry

HO only closed strings in bulk, SO(32) gauge symmetry

The five superstring theories are related via numerous dualities:
1 T-duality: The radius R of a compact direction with the topology of a

circle is mapped to 1
R and “wrapped” string states will be exchanged

with high-momentum string states.

R ↔ 1
R

exchange of state types︷ ︸︸ ︷
n↔ w
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Dualities II: T-, S- and U-duality

Examples of T-duality:
Type-IIA on radius R is T-dual to type-IIB on radius 1

R
Heterotic E8×E8-string is T-dual to the heterotic SO(32)-string.

Ù T-duality relates the small to the large dimensions.
2 S-duality: Inverts the string coupling, i.e. gs ↔ 1

gs
.

[ The string coupling depends on the dilaton: gs := e−Φ ⇐⇒ Φ 7→ −Φ.]

Examples of S-duality:
Type-I superstring is S-dual to the heterotic SO(32)-string
Type-IIA superstring is S-dual to the heterotic E8×E8-string
The type-IIB superstring ist self-dual under S-duality!

Ù S-duality relates the weak and strong coupling regime.
3 U-duality: combination of S- and T-duality in the context of M-theory.
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M-Theory I: The duality web

Witten (1995): “If all the perturbative superstring theories are dual to
each other, there should be a common non-perturbative origin!”

Ù M-theory Ù sparked the “2nd superstring revolution”

Basic idea: The 5 superstring theories should be certain limiting cases
of M-theory.
Main problem: As yet there is no microscopic formulation of M-theory,
i.e. there’s no such thing like a “M-theory lagrangian”.

Different approaches:
1 Formulation as the non-perturbative

origin of type-IIA superstring theory
2 “Matrix model” formulation as a

membrane theory
3 UV-completion of the 11d N = 1

SUGRA
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M-Theory II: Type-IIA at strong coupling

Important observation: The effective 10d type-IIA SUGRA theory is
equivalent to the dimensional reduction of 11d SUGRA.

Lowest order 11d N = 1 and type-IIA supergravity (bosonic part)

dimensional reduction: ignore field’s dependency on 11th coord.; G4 := dĈ3

Sbos
11d =

1
2κ2

∫
d11x

√
g̃
[
R̃ − 1

48
|G4|2

]
+

1
4κ2

∫
Ĉ3 ∧ G4 ∧ G4

Sbos
IIA =

1
2κ2

∫
d10x

√
g
[
e−2Φ

(
R + 4(∇Φ)2 − |H3|2

12

)
−|F4|2

48
− |F2|2

2︸ ︷︷ ︸
R-R kinetic terms do

not couple to the dilaton

]

(String frame) +
1

4κ2

∫
B2 ∧ dC3 ∧ dC3

In the dimensional reduction, the diagonal component g̃11,11 of the
11d metric becomes the string coupling gs = e−Φ

Ù Type-IIA apparently “grows” a 11th dimension for gs →∞
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M-Theory III: M2-branes and matrix theory

The 11d 3-form field Ĉ3 naturally couples to 2-branes Ù M2-branes
M2-branes are supposedly the “fundamental” objects of M-theory, just
like strings are the fundamental objects of (perturbative) string theory
In matrix theory one aims to find a direct quantization of such
“membranes” in order to find a direct description of M-theory

Quantization conditions seem to be too restrictive
Classification of 3-manifolds is vastly more difficult compared to the
classification of 2-manifolds (string worldsheet topologies)



For example, the Poincaré conjecture (which states that every
simply connected, compact 3-manifold (without boundary) is
homeomorphic to the 3-sphere) was first solved in 2003 by Grig-
ori Perelman (and led to his - rejected! - Fields Medal in 2006)




Ù Many unsolved problems in finding a proper formulation of M-theory...

Benjamin Jurke (MPI für Physik) String Theory Würzburg; Jan 8, 2009 25 / 36

http://www.bjurke.net


F-Theory I: Enhanced S-duality of type-IIB

Lowest order of 10d N = 2 type-IIB supergravity (bosonic part)

Sbos
IIB =

1
2κ2

∫
d10x

√
g
[
R − 1

2
∂S ∂S̄
(Im S)2 −

|G3|2
12
− |F5|2

240

]

(Einstein frame) +
1
2i

∫
C4 ∧ G3 ∧ Ḡ3 where G3 := i

F3 + SH3√
Im S

In case of type-IIB the S-duality group is enhanced to SL(2;R)

Define the (complex) axio-dilaton S := C0 + ie−φ scalar field.
Some matrix Λ :=

( a
c

b
d

)
∈ SL(2;R) acts on the fields

S 7→ ΛS :=
aS + b
cS + d

(
B2

C2

)
7→ (Λ−1)t

(
B2

C2

)

Due to the Dirac quantization condition, the group is reduced to
integer coefficents Ù SL(2;Z) in quantum theory
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F-Theory II: Geometrization of the axio-dilaton

Vafa (1996): Since SL(2;Z) is the torus
amplitude’s modular group, one should
interpret the axio-dilaton value at each
space-time point to parameterize a 2-torus
complex structure and geometry.

12d total space X π−−→M elliptically-fibered over 10d space-timeM
Due to SUSY constraints one takes an elliptically-fibered compact
space X4 with a Calabi-Yau 3-fold base B3.

Usually: Elliptically-fibered Calabi-Yau 4-fold X4
π−−→B3

Sometimes: Elliptically-fibered Spin(7)-holonomy manifold Y π−−→B3

Consider space-time varying dilaton backgrounds with string coupling
gs being weak and strong Ù F-theory = non-perturbative type-IIB
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F-Theory III: 7-branes and singularities

The R-R scalar C0 couples magnetically to D7-branes.
Consider a closed loop γ in the 2d transverse space to the 8d
D7-worldvolume. Walking along γ, the value of S changes value!

Ù Monodromy: S 7→ S + 1
Ù Axion-dilaton singularity at the position of the D7-brane!
Ù Singularity in the elliptic fibre!

F-theory model building 1-0-1
1 Take an elliptically-fibered compact space X4

π−−→B3.
Ù stage: X = R3,1 × X4︸ ︷︷ ︸

12d total space

pr1×π−−−−−→M = R3,1 × B3︸ ︷︷ ︸
10d space-time

2 7-branes are located at those points in space-time, where the elliptic
fibre degenerates.

3 Non-perturbative type-IIB with space-time varying gs is described.
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(Optional) Part III

Recent
Developments

More on F-theory
F-theory GUTs with exceptional gauge groups
(Vafa et al. ’08)



F-Theory IV: A deeper look at singularities

The degeneration of the elliptic fibre in mathematically understood in
terms of Enriques-Kodaire singularities.

Singularities of Kodaire type I1 (“double point”)

Let α, β ∈ H1(T 2) ∼= π1(T 2) ∼= Z⊕ Z denote the two generators
corresponding to the two independant circles on a torus.

Ù torus degeneration: 1-cycle pα + qβ collapses

The objects located at such degeneration points are (p, q) 7-branes.
(p, q) 7-branes can be treated as the image of ordinary D7-branes
under appropiate SL(2;Z)-transformations.

Ordinary D7-branes are identified as (1, 0) 7-branes
O7-planes can be resolved into certain pairs of (p, q) 7-branes

In the same spirit one defines (p, q)-strings connecting the 7-branes.
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F-Theory V: ADE singularities

Singularities of other Kodaire type: Ù ADE singularities
Consider an elliptically-fibered CY 4-fold X4

π−−→B3 and let S2 ⊂ B3
denote the singularity locus where the fibre degenerates.
Let KS

πK−−−→S denote the canonical line bundle and NS
πN−−−→S the

normal line bundle of S ⊂ B .
The total space of X |S π−−→S looks like an isolated ADE surface
singularity fibered over S .

ADE singularities

An f = y2 − x2 − zn+1 SU(n + 1)

Dn f = y2 − x2z − zn−1 SO(2n)

E6 f = y2 − x3 − z4 E6

E7 f = y2 − x3 − xz3 E7

E8 f = y2 − x3 − z5 E8

Let x , y , z be the fibre
coordinates (sections) of
K a

S ⊕ Kb
S ⊕ NS−→S .

The subset {f (x , y , z) = 0} of
this bundle’s total space
describes X |S π−−→S .
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F-Theory VI: ADE branes and gauge groups

The ADE singularity determines the worldvolume gauge group of the
corresponding ADE 7-brane.
Correspondence to the perturbative constructions:

SU(n + 1): Realized by stacks of n + 1 coincident D7-branes.
SO(2n): Realized by D7-branes on top of O7-planes.
E6,E7,E8: Can be realized by using specific arrangements of (p, q)
7-branes which are connected by appropiate (p, q)-string networks.

Ù The F-theory approach naturally yields exceptional gauge groups!
Given two ADE 7-branes on S , S ′ ⊂ B with gauge groups G ,G ′ the
gauge group / singularity enhances over the intersection:
GΣ ⊃ G × G ′.
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Vafa et al. I: Basic ideas

The basic ideas of the work of Vafa et al:
1 Consider only local models, i.e. the elliptically-fibered CY 4-fold is only

considered in a small neighbourhood of the singular locus S ⊂ B .
Ù All complicated global problems of the geometry are ignored

[ This relies on the assumption that one can decouple gravity.]

2 Problems in perturbative type-IIB GUT models: It is very difficult to
obtain the SO(10)-spinor and the Yukawa coupling 5H · 10M · 10M for
the top quark mass in SU(5) models.

Ù Both are easily dealt with in non-perturbative type-IIB / F-theory
3 Geometric “hierarchy” of Vafa’s model:

Gravity: 10d (bulk) B3

Gauge fields: 8d (located on 7-branes) S2

Matter fields: 6d (double intersection of 7-branes) S ∩ S ′

Interactions: 4d (triple intersection of 7-branes) S ∩ S ′ ∩ S ′′
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Vafa et al. II: An SU(5) toy model

4 The matter content and interactions are determined by the singularity
enhancement at the intersections.

Ù “Exceptional” enhancements at intersections
5 The doublet-triplet splitting problem can be dealt with by localizing

Hu and Hd on different branes.

SU(5) toy model
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Summary & Conclusion

Part I: 4d model building
“Bottom-up” model building: Using intersecting stacks of
D-branes and appropiate O-planes on Calabi-Yau spaces
one can construct various (realistic) 4d N = 1 models.
All ingredients have to be added by hand.
Global consistency conditions are well understood.

Part II: Non-perturbative aspects
“Top-down” model building: Almost all properties are
encoded in an unified (geometric) structure.
Many ingredients are required by consistency conditions.
Global models are difficult to construct explicitly.
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Books to start serious reading...

Elias Kiritsis:
“String Theory in a Nutshell” , 2007

K. Becker, M. Becker, J. Schwarz:
“String Theory and M-Theory” , 2007

Older books - particularly useful for computational details:
Joseph Polchinski: “String Theory”

1 An Introduction to the Bosonic String, 1998
2 Superstring Theory and beyond, 1998

Green, Schwarz, Witten: “Superstring Theory”
1 Introduction, 1987
2 Loop Amplitudes, Anomalies and Phenomenology, 1988

Lüst, Theisen: “Lectures on String Theory” ,1989
Ù 2nd revised edition coming 2009
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