String Theory A general overview & current "hot" topics

Benjamin Jurke

4d model building

Non-perturbative aspects

 Optional: Vafa's F-theory GUT model building

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Würzburg — January 8th, 2009

(ロ) (四) (三) (三)

Last time (\rightarrow talk by Christoph Uhlemann)

- Bosonic string:
 - Nambu-Goto and Polyakov action
 - Mode expansion and Virasoro algebra
 - Interactions and scattering
- Superstrings:
 - Worldsheet SUSY, spacetime fermions
 - Type-I and type-II superstring spectrum
 - Spacetime SUSY
- Toroidal compactification:
 - Circle compactification of the bosonic string
 - 2-Torus compactification and modular invariance
 - Winding modes and T-duality
- D-branes
- Chan-Paton factors

2/36

・ロト ・得ト ・ヨト ・ヨト

4d model building

- Calabi-Yau compactification
- Orbifolds
- Flux compactification and moduli stabilization

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

D-branes and orientifolds

SUSY conditions I: Spinor splitting

Compactifying the 10d N = 2 type-II superstring on a 6-torus yields (maximal) 4d N = 8 supersymmetry in the effective theory.
 → no chiral 4d fermions in toroidal compactifications

New approach: Investigate the effective 10d $\mathcal{N} = 2$ type-II SUGRA and find conditions for 4d minimal supersymmetry.

- Assume a product space-time $\mathcal{M}_{10} = \mathbb{R}^{1,3} \times K^6$, where K^6 is some compact inner space.
 - → 4d Poincaré-invariance: All the fermionic fields must be trivial!

SUSY variations without R-R fluxes

bosons: All vanish due to the trivial fermionic fields (parity) gravitino: $\delta_{\epsilon}\chi_{\mu} = \nabla_{\mu}\epsilon - \frac{1}{4}H_{\mu\nu\rho}\gamma^{[\nu}\gamma^{\rho]}\epsilon + (\text{fermions})^{2}$ dilatino: $\delta_{\epsilon}\varphi = (\gamma^{\mu}\nabla_{\mu}\Phi)\epsilon + \frac{1}{24}H_{\mu\nu\rho}\gamma^{[\mu}\gamma^{\nu}\gamma^{\rho]}\epsilon + (\text{fermions})^{2}$

One imposes additional simplifications in order to make the SUSY variations of the fermionic fields vanish:

- 2 Consider a constant dilaton field $\Phi = \Phi_0$.
- Onsider a vanishing NS-NS background flux, i.e. H₃ = 0.
 → Dilatino equation automatically satisfied.

Remaining no-flux SUSY variationsgravitino: $\delta_{\epsilon}\chi_{\mu} = \nabla_{\mu}\epsilon$ Benjamin Jurke (MPI für Physik)String TheoryWürzburg; Jan 8, 20095 / 36

SUSY conditions III: Geometric implications

- On $\mathbb{R}^{1,3} imes \mathcal{K}^6$ the equation $abla_\mu \epsilon = 0$ splits into two conditions:
 - **(**) Constant spinor on $\mathbb{R}^{1,3} \rightarrow$ trivial condition.
 - Govariantly constant, nowhere vanishing spinor on compact space K⁶
 → severe constraints on the metric and topology.

A 6d SU(3)-holonomy manifold is just a Calabi-Yau manifold.
 → The internal space K⁶ must be a Calabi-Yau 3-fold.

Calabi-Yau compactification I: Basic setup

In string theory model building only the massless spectrum is usually considered. The primary interest is in the associated effective SUGRA theory obtained by compactification:

- Heterotic string theory on CY 3-fold \rightarrow 4d $\mathcal{N} = 1$ het. SUGRA
- Type-II string theory on CY 3-fold → 4d N = 2 type-II SUGRA
 → Need to break SUSY further down do N = 1.

Calabi-Yau compactification II: Effective field content

Problem: Non-trivial CY 3-fold metrics are not explicitly known
 → only access to topology of the compact space K⁶.

Type-IIA on CY 3-fold

 $h^{1,1}$ Abelian vector multiplets $h^{2,1} + 1$ hypermultiplets

Type-IIB on CY 3-fold

 $h^{2,1}$ Abelian vector multiplets $h^{1,1} + 1$ hypermultiplets

 $\begin{bmatrix} Hodge numbers: & h^{p,q} := \dim_{\mathbb{R}} H^{p,q}_{\bar{\partial}}(K^6) \text{ are the dimensions of the} \\ \text{Dolbeault cohomology groups (c.f. Betti numbers).} \end{bmatrix}$

• The massless scalars in those $\mathcal{N}=2$ multiplets of the effective theory parameterize the geometric moduli space, which is a product space:

$$\mathcal{M}_{\mathrm{geom}}(\mathcal{K}^6) = \mathcal{M}^{1,1}(\mathcal{K}^6) \times \mathcal{M}^{2,1}(\mathcal{K}^6).$$

The expectation values of the massless scalars are determined by the values of the geometric moduli.

Calabi-Yau compactification III: Massless scalars & moduli

Number of massless scalars in effective theory

- type-IIA $\rightarrow 2h^{1,1} + 4(h^{2,1} + 1)$ scalars
- type-IIB $\rightarrow 2h^{2,1} + 4(h^{1,1} + 1)$ scalars

Scalars: An $\mathcal{N} = 2$ hypermultiplet has 4 real scalars, an Abelian vector multiplet has 2 real scalars]

- Changing the value of the massless scalars does not require any energy, therefore they may take any value.
- Such unconstrained massless scalars give rise to an additional 5th interaction unobserved in nature.

 \rightarrow The scalars have to disappear / be fixed.

- But unfortunately in the effective type-II supergravity there is no potential for the massless scalars...
 - → Moduli stabilization problem

Compactifications: A preliminary overview

- Toroidal compactification:
 - Very simple to compute using periodic coordinates.
 - No supersymmetry breaking ($\mathcal{N}=8$ for type-II)
 - \rightarrow phenomenologically ruled out
- Orbifold compactification:
 - Computations quite similar to toroidal compactifications
 - Singular space-time
 - Breaks supersymmetry to minimal levels (N = 2 for type-II)
 → need further SUSY breaking
- Calabi-Yau compactification:
 - Breaks supersymmetry to minimal levels ($\mathcal{N}=2$ for type-II)
 - Only access to topological data of the internal space
 - Introduces lots of massless scalars (geometric moduli)
 → need moduli stabilization and further SUSY breaking
- \rightarrow need further ingredients: Fluxes & D_p-branes & orientifolds

Flux compactification I: Background RR-fluxes

R-R *p*-forms in type-IIA

opp. chirality: $_{L}|+\rangle \otimes |-\rangle_{R}$ $\rightarrow C_{1}, C_{3}, C_{5}, C_{7}, C_{9}$

R-R *p*-forms in type-IIB

same chirality: $_{\rm L}|+\rangle \otimes |+\rangle_{\rm R}$ $ightarrow C_0, C_2, C_4, C_6, C_8, C_{10}$

- NS-NS flux: $H_3 := dB_2$ (field-strenth of the NS-NS 2-form)
- R-R fluxes: $F := dC H_3 \wedge C$ (formal sum of all even/odd fluxes)
 - $\begin{array}{ll} F_0 = \star \, F_{10} & F_1 = \, \mathrm{d} \, C_0 \\ F_2 = \, \mathrm{d} \, C_1 & F_3 = \, \mathrm{d} \, C_2 \, H_3 \, C_0 \\ F_4 = \, \mathrm{d} \, C_3 \, H_3 \wedge \, C_1 & F_5 = \, \mathrm{d} \, C_4 \, H_3 \wedge \, C_2 \end{array}$
- Hodge self-duality constraint: $F_n = (-1)^{\lfloor \frac{n}{2} \rfloor} \star F_{10-n}$
- Bianchi identities: dH = 0, $dF H \wedge F = 0$
- Basic idea: In the presence of background fluxes, changing the value of the massless scalars requires energy.
 - \rightarrow Massless scalars obtain dynamically stabilized values

Flux compactification II: Geometric implications

• In order to break the supersymmetry to minimal levels as before, one has to consider the SUSY variations of the fields including the R-R fluxes.

Relevant SUSY variations to first order in ϵ including R-R fluxes

bosons:	Vanish due to trivial fermionic fields
gravitino:	$\delta_{\epsilon}\chi_{\mu} = \nabla_{\mu}\epsilon + \frac{1}{4} \not\!\!\!/_{\mu}\mathcal{P}\epsilon + \frac{1}{16}\mathrm{e}^{\Phi}\sum_{n} \not\!\!\!/_{n}\gamma_{\mu}\mathcal{P}_{n}\epsilon$
dilatino:	$\delta_{\epsilon}\varphi = \left(\partial \!\!\!/ \phi + \frac{1}{2} \not \!\!/ \mathcal{P}\right)\epsilon + \frac{1}{8} \mathrm{e}^{\Phi} \sum_{n} (-1)^{n} (5-n) \not \!\!/ _{n} \mathcal{P}_{n} \epsilon$

- Actually solving the above conditions requires much further techniques:
 - Generalized complex geometry → Generalized Calabi-Yau manifolds

This deals with one of the two issues mentioned.

→ Still need to further break SUSY to $\mathcal{N} = 1$.

D-branes I: Minimal coupling

- Open strings can have either von-Neumann or Dirichlet boundary conditions. In case of the latter, their space-time position is fixed to a submanifold. → D_p-brane.
- D-branes are minimally charged under type-II R-R *p*-form fields.

Electric coupling

The natural coupling of a (p+1)-form to a p-brane is given by

$$Q_p \int_{\mathcal{W}_p} A_{p+1}$$

 \rightarrow electric *p*-brane with charge Q_p

Magnetic coupling

The magnetic dual to the field strength $F_{p+2} := dA_{p+1}$ is defined by the Hodge dual $\tilde{F} := \star F$, i.e.

$$\mathrm{d}\tilde{A}_{D-p-3}=\tilde{F}_{D-p-2}=\star F_{p+2}=\star \mathrm{d}A_{p+1}.$$

→ magnetic (D - p - 4)-brane with charge \tilde{Q}_{D-p-4} .

D-branes II: Worldvolume actions

• Open string excitations induce a U(1)-gauge theory on the (p+1)-dimensional D_p-brane-worldvolume \mathcal{W}_p , which couples to all the lower R-R fields $C_{p+1}, C_{p-1}, C_{p-3}, \ldots$

Worldvolume actions of D-branes

Dirac-Born-Infeld:
$$S_{\text{DBI}} = -T_p \int_{\mathcal{W}_p} e^{-\phi} \sqrt{-\det(g + B_2 + 2\pi\alpha' F_2)}$$

Chern-Simons: $S_{\text{CS}} = \frac{T_p}{2} \int_{\mathcal{W}_p} \underbrace{C \wedge \operatorname{ch}(F_2)}_{\text{coupling}} \wedge \underbrace{\sqrt{\frac{\widehat{\mathcal{A}}(R_{\text{TW}_p})}{\widehat{\mathcal{A}}(R_{\text{NW}_p})}}}_{\text{required for gravitational anomaly cancellation}} |_{(p+1)-\text{form}}$

$$\begin{aligned} & \left[\textit{Example:} \quad \textit{C} \land \textit{ch}(\textit{F}_2) \right]_{\texttt{8-form}} = \textit{C}_\texttt{8} + \textit{C}_\texttt{6} \land \textit{Tr} \textit{F}_2 + \textit{C}_\texttt{4} \land \textit{Tr}(\textit{F}_2 \land \textit{F}_2) + \dots \end{aligned} \right] \end{aligned}$$

D_p -branes in type-IIA

D0 (point particle), D2, D4, D6, D8

D_p-branes in type-IIB

D(-1) (D-instanton), D1 (D-string), D3, D5, D7, D9 (space-time)

- Open strings can stretch between several D-branes.
 - A collection of N coinciding D_p-branes is called a stack
 - \rightarrow the stack's worldvolume gauge group enhances to U(N).
 - The branes of a stack can dynamically move apart
 - → gauge symmetry breaking $U(N) \mapsto U(N_1) \times U(N_2)$.
 - Intersecting stacks of branes can be used to generate chiral fermions. The states resulting from the intersection transform in the bi-fundamental representation of the stacks' gauge groups, i.e. (□_a, □_b) or (□_a, □_b). → bi-fundamental (chiral) matter

In a compactification scenario ℝ^{1,3} × K⁶ a D_p-brane occupies a (p-3)-dimensional submanifold of K⁶. In the compact directions the total charge and tension must cancel. → Chiral anomalies

According to the Gauß theorem from classical elec-Recall: trodynamics, the force / field-strength in a compact volume is determined by the total charge content.

→ Tadpole and consistency conditions.

 Introduce anti-D_p-branes: Same geometric properties as ordinary D-branes, but negative charge.

→ Charge cancellation using D-branes and anti-D-branes

Orientifolds I: Worldsheet parity operator

- On the type-II closed superstring, the left- and right-moving are independant of each other except for the level matching ("equal mass") condition. → N = 2 SUSY
- Consider worldsheet orientation-reversing actions.

- → Consider the coset space $\mathcal{M}_{10}/(\Omega_{\rm P}P)$.
- The action of P on the space-time is usually generated by an involution ξ, i.e. a mapping ξ : M₁₀ → M₁₀ where ξ² = Id.

Orientifolds II: Orientifolding and O-planes

Orientifolding in type-IIA

action: $\underbrace{(-1)^{F_{\rm L}}\Omega_{\rm P}\xi}_{O6}$ [holomorphic volume: $\xi^*\Omega = \overline{\Omega}$]
complex structure: $\xi^*J = -J$]

- The fixpoint set of the orientifold involution ξ of the space-time is called an orientifold plane.
- Supersymmetry considerations restrict the possible types of O-planes.

Orientifolding in type-IIB action: $(-1)^{F_{\rm L}}\Omega_{\rm P}\xi$ or $\Omega_{\rm P}\xi$ 05/09 03/07 [holomorphic volume: $\xi^*\Omega = \pm \Omega$ complex structure: $\xi^*J = J$]

Image: Image:

→ Tension cancellation using O-planes.

• *Example:* Orientifolding the *(oriented, closed)* type-IIB superstring yields the *(unoriented, open/closed)* type-I superstring.

Calabi-Yau orientifold model building 1-0-1

- **(**) Calabi-Yau geometry ensures 4d $\mathcal{N} = 2$ supersymmetry.
- 3 Adding D_p -branes and O-planes breaks SUSY to 4d $\mathcal{N} = 1$ and provides the means of U(n), SO(n) or Sp(n) gauge theory.
- **3** Background fluxes can be used to stabilize the moduli.
 - \blacktriangleright IIA and IIB model building with 4d $\mathcal{N}=1$ eff. theories
 - In principle, we now have all the neccessary tools for perturbative "bottom-up" 4d model building.
 - → What about the non-perturbative side?

Part II

Non-perturbative

aspects

- Duality web: T-, S- and U-duality
- M-theory
- F-theory as non-perturbative type-IIB theory

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

L

Five consistent 10d perturbative superstring theories

open and closed strings in bulk, SO(32) gauge symmetry

- IIA closed strings in bulk, open strings ending on D-branes, non-chiral
- IIB closed strings in bulk, open strings ending on D-branes, chiral
- HE $\,$ only closed strings in bulk, ${\rm E}_8 \times {\rm E}_8$ gauge symmetry
- HO only closed strings in bulk, SO(32) gauge symmetry

The five superstring theories are related via numerous dualities:

T-duality: The radius R of a compact direction with the topology of a circle is mapped to ¹/_R and "wrapped" string states will be exchanged with high-momentum string states.

$$R \leftrightarrow \frac{1}{R} \qquad \stackrel{\text{exchange of state types}}{\overbrace{n \leftrightarrow w}}$$
Benjamin Jurke (MPI für Physik) String Theory Würzburg: Jan 8, 2009 21 / 36

Examples of T-duality:

- Type-IIA on radius R is T-dual to type-IIB on radius $\frac{1}{R}$
- Heterotic $E_8 \times E_8$ -string is T-dual to the heterotic SO(32)-string.
- \rightarrow T-duality relates the small to the large dimensions.
- **3** S-duality: Inverts the string coupling, i.e. $g_s \leftrightarrow \frac{1}{g_s}$.

[The string coupling depends on the dilaton: $g_s := e^{-\Phi} \iff \Phi \mapsto -\Phi$.] Examples of S-duality:

- $\bullet\,$ Type-I superstring is S-dual to the heterotic ${\rm SO(32)}\mbox{-string}$
- $\bullet~$ Type-IIA superstring is S-dual to the heterotic $\mathrm{E}_8 \times \mathrm{E}_8\text{-string}$
- The type-IIB superstring ist self-dual under S-duality!
- \rightarrow S-duality relates the weak and strong coupling regime.
- **Output** U-duality: combination of S- and T-duality in the context of M-theory.

M-Theory I: The duality web

• Witten (1995): "If all the perturbative superstring theories are dual to each other, there should be a common non-perturbative origin!"

→ M-theory → sparked the "2nd superstring revolution"

- Basic idea: The 5 superstring theories should be certain limiting cases of M-theory.
- Main problem: As yet there is no microscopic formulation of M-theory, i.e. there's no such thing like a "M-theory lagrangian".

- Different approaches:
 - Formulation as the non-perturbative origin of type-IIA superstring theory
 - "Matrix model" formulation as a membrane theory

M-Theory II: Type-IIA at strong coupling

• Important observation: The effective 10d type-IIA SUGRA theory is equivalent to the dimensional reduction of 11d SUGRA.

Lowest order 11d
$$\mathcal{N} = 1$$
 and type-IIA supergravity (bosonic part)
dimensional reduction: ignore field's dependency on 11th coord.; $G_4 := d\hat{C}_3$
 $S_{11d}^{\text{bos}} = \frac{1}{2\kappa^2} \int d^{11}x \sqrt{\tilde{g}} \left[\tilde{R} - \frac{1}{48} |G_4|^2 \right] + \frac{1}{4\kappa^2} \int \hat{C}_3 \wedge G_4 \wedge G_4$
 $S_{\text{IIA}}^{\text{bos}} = \frac{1}{2\kappa^2} \int d^{10}x \sqrt{g} \left[e^{-2\Phi} \left(R + 4(\nabla\Phi)^2 - \frac{|H_3|^2}{12} \right) \underbrace{-\frac{|F_4|^2}{48} - \frac{|F_2|^2}{2}}_{\text{N-R kinetic terms do}} + \frac{1}{4\kappa^2} \int B_2 \wedge dC_3 \wedge dC_3$
 $R^{-R kinetic terms do}_{\text{not couple to the dilaton}}$

In the dimensional reduction, the diagonal component *g*_{11,11} of the 11d metric becomes the string coupling *g*_s = e^{-Φ}
 → Type-IIA apparently "grows" a 11th dimension for *g*_s → ∞

M-Theory III: M2-branes and matrix theory

- The 11d 3-form field \hat{C}_3 naturally couples to 2-branes \rightarrow M2-branes
- M2-branes are supposedly the "fundamental" objects of M-theory, just like strings are the fundamental objects of (perturbative) string theory
- In matrix theory one aims to find a direct quantization of such "membranes" in order to find a direct description of M-theory
 - Quantization conditions seem to be too restrictive
 - Classification of 3-manifolds is vastly more difficult compared to the classification of 2-manifolds (string worldsheet topologies)

For example, the Poincaré conjecture (which states that every simply connected, compact 3-manifold (without boundary) is homeomorphic to the 3-sphere) was first solved in 2003 by Grigori Perelman (and led to his - rejected! - Fields Medal in 2006)

 \rightarrow Many unsolved problems in finding a proper formulation of M-theory...

F-Theory I: Enhanced S-duality of type-IIB

Lowest order of 10d $\mathcal{N}=2$ type-IIB supergravity (bosonic part)

$$\begin{split} S_{\mathrm{IIB}}^{\mathrm{bos}} &= \frac{1}{2\kappa^2} \int \mathrm{d}^{10} x \sqrt{g} \left[R - \frac{1}{2} \frac{\partial S \, \partial \bar{S}}{(\mathrm{Im} \, S)^2} - \frac{|G_3|^2}{12} - \frac{|F_5|^2}{240} \right] \\ \\ & \text{Einstein frame)} \qquad + \frac{1}{2\mathrm{i}} \int C_4 \wedge G_3 \wedge \bar{G}_3 \qquad \text{where} \quad G_3 \coloneqq \mathrm{i} \frac{F_3 + SH_3}{\sqrt{\mathrm{Im} \, S}} \end{split}$$

• In case of type-IIB the S-duality group is enhanced to $SL(2; \mathbb{R})$

- Define the (complex) axio-dilaton $S := C_0 + ie^{-\phi}$ scalar field.
- Some matrix $\Lambda := \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2; \mathbb{R})$ acts on the fields

$$S \mapsto \Lambda S := \frac{aS+b}{cS+d}$$
 $\begin{pmatrix} B_2 \\ C_2 \end{pmatrix} \mapsto (\Lambda^{-1})^{t} \begin{pmatrix} B_2 \\ C_2 \end{pmatrix}$

 Due to the Dirac quantization condition, the group is reduced to integer coefficents → SL(2; Z) in quantum theory

F-Theory II: Geometrization of the axio-dilaton

 Vafa (1996): Since SL(2; ℤ) is the torus amplitude's modular group, one should interpret the axio-dilaton value at each space-time point to parameterize a 2-torus complex structure and geometry.

• 12d total space $\mathcal{X} \xrightarrow{\pi} \mathcal{M}$ elliptically-fibered over 10d space-time \mathcal{M}

- Due to SUSY constraints one takes an elliptically-fibered compact space X₄ with a Calabi-Yau 3-fold base B₃.
 - Usually: Elliptically-fibered Calabi-Yau 4-fold $X_4 \xrightarrow{\pi} B_3$
 - Sometimes: Elliptically-fibered Spin(7)-holonomy manifold $Y \xrightarrow{\pi} B_3$
- Consider space-time varying dilaton backgrounds with string coupling g_s being weak and strong \rightarrow F-theory = non-perturbative type-IIB

F-Theory III: 7-branes and singularities

- The R-R scalar C_0 couples magnetically to D7-branes.
- Consider a closed loop γ in the 2d transverse space to the 8d
 D7-worldvolume. Walking along γ, the value of S changes value!
 - → Monodromy: $S \mapsto S + 1$
 - \rightarrow Axion-dilaton singularity at the position of the D7-brane!
 - → Singularity in the elliptic fibre!

F-theory model building 1-0-1

3 Non-perturbative type-IIB with space-time varying $g_{\rm s}$ is described.

(日) (同) (三) (三)

- More on F-theory
- F-theory GUTs with exceptional gauge groups (Vafa et al. '08)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

F-Theory IV: A deeper look at singularities

• The degeneration of the elliptic fibre in mathematically understood in terms of Enriques-Kodaire singularities.

Singularities of Kodaire type I₁ ("double point")

Let $\alpha, \beta \in H_1(T^2) \cong \pi_1(T^2) \cong \mathbb{Z} \oplus \mathbb{Z}$ denote the two generators corresponding to the two independant circles on a torus. \rightarrow torus degeneration: 1-cycle $p\alpha + q\beta$ collapses

- The objects located at such degeneration points are (p, q) 7-branes.
- (p, q) 7-branes can be treated as the image of ordinary D7-branes under appropriate SL(2; ℤ)-transformations.
 - Ordinary D7-branes are identified as (1,0) 7-branes
 - O7-planes can be resolved into certain pairs of (p, q) 7-branes
- In the same spirit one defines (p, q)-strings connecting the 7-branes.

Singularities of other Kodaire type:

ADE singularities

- Consider an elliptically-fibered CY 4-fold $X_4 \xrightarrow{\pi} B_3$ and let $S_2 \subset B_3$ denote the singularity locus where the fibre degenerates.
- Let $K_S \xrightarrow{\pi_K} S$ denote the canonical line bundle and $N_S \xrightarrow{\pi_N} S$ the normal line bundle of $S \subset B$.
- The total space of $X|_S \xrightarrow{\pi} S$ looks like an isolated ADE surface singularity fibered over S.

ADE singularities

A _n	$f = y^2 - x^2 - z^{n+1}$	SU(n+1)
D _n	$f = y^2 - x^2 z - z^{n-1}$	SO(2n)
${\rm E}_{6}$	$f = y^2 - x^3 - z^4$	E_6
$\mathbf{E_{7}}$	$f = y^2 - x^3 - xz^3$	E_7
E_{8}	$f = y^2 - x^3 - z^5$	E_{8}

Let x, y, z be the fibre coordinates (sections) of $K_S^a \oplus K_S^b \oplus N_S \longrightarrow S$.

The subset $\{f(x, y, z) = 0\}$ of this bundle's total space describes $X|_{S} \xrightarrow{\pi} S$.

31 / 36

F-Theory VI: ADE branes and gauge groups

- The ADE singularity determines the worldvolume gauge group of the corresponding ADE 7-brane.
- Correspondence to the perturbative constructions:
 - SU(n+1): Realized by stacks of n+1 coincident D7-branes.
 - SO(2n): Realized by D7-branes on top of O7-planes.
 - E_6, E_7, E_8 : Can be realized by using specific arrangements of (p, q)7-branes which are connected by appropriate (p, q)-string networks.

→ The F-theory approach naturally yields exceptional gauge groups!

Given two ADE 7-branes on S, S' ⊂ B with gauge groups G, G' the gauge group / singularity enhances over the intersection:
 G_Σ ⊃ G × G'.

Vafa et al. I: Basic ideas

The basic ideas of the work of Vafa et al:

Consider only local models, i.e. the elliptically-fibered CY 4-fold is only considered in a small neighbourhood of the singular locus S ⊂ B.
 → All complicated global problems of the geometry are ignored

[This relies on the assumption that one can decouple gravity.]

⁽²⁾ Problems in perturbative type-IIB GUT models: It is very difficult to obtain the SO(10)-spinor and the Yukawa coupling $\mathbf{5}_{H} \cdot \mathbf{10}_{M} \cdot \mathbf{10}_{M}$ for the top quark mass in SU(5) models.

→ Both are easily dealt with in non-perturbative type-IIB / F-theory
 ④ Geometric "hierarchy" of Vafa's model:

Gravity:	10d <i>(bulk)</i>	B ₃
Gauge fields:	8d (located on 7-branes)	<i>S</i> ₂
Matter fields:	6d (double intersection of 7-branes)	$S\cap S'$
Interactions:	4d (triple intersection of 7-branes)	$S\cap S'\cap S''$

Vafa et al. II: An SU(5) toy model

- The matter content and interactions are determined by the singularity enhancement at the intersections.
 - → "Exceptional" enhancements at intersections

Part I: 4d model building

- "Bottom-up" model building: Using intersecting stacks of D-branes and appropiate O-planes on Calabi-Yau spaces one can construct various (realistic) 4d $\mathcal{N} = 1$ models.
- All ingredients have to be added by hand.
- Global consistency conditions are well understood.

Part II: Non-perturbative aspects

- "Top-down" model building: Almost all properties are encoded in an unified (geometric) structure.
- Many ingredients are required by consistency conditions.
- Global models are difficult to construct explicitly.

Books to start serious reading...

Elias Kiritsis: *"String Theory in a Nutshell"*, 2007

K. Becker, M. Becker, J. Schwarz: "String Theory and M-Theory", 2007

Older books - particularly useful for computational details:

- Joseph Polchinski: "String Theory"
 - **1998 An Introduction to the Bosonic String**, 1998
 - **2** Superstring Theory and beyond, 1998
- Green, Schwarz, Witten: "Superstring Theory"
 - Introduction, 1987
 - **2** Loop Amplitudes, Anomalies and Phenomenology, 1988

● Lüst, Theisen: *"Lectures on String Theory"*,1989 → 2nd revised edition coming 2009