Cohomology of Toric Varieties and Applications

Benjamin Jurke

Contents

- The algorithm
- cohomCalg
- Applications

String Math 2011 (Philadelphia) — June 8, 2011

with R. Blumenhagen, T. Rahn, H. Roschy

- Algorithm: arXiv:1003.5217
- Applications: arXiv:1010.3717
Motivation: Why line bundle cohomology?

Pure line bundles
- Type IIB orientifolds: Abelian fluxes, chiral spectrum
- Type IIB & F-theory: Instanton zero modes, fluxes

Vector bundles from line bundles

Heterotic model building: Holomorphic vector bundle V over Calabi-Yau 3-fold X for the breaking of the gauge group.

- Most vector bundles are constructed as monads:

 $0 \longrightarrow V \longleftarrow \bigoplus \mathcal{O}_X(b_i) \longrightarrow \bigoplus \mathcal{O}_X(c_j) \longrightarrow 0$

- The tangent bundle T_X can be described as a monad.
- The vector bundle moduli can be computed from $\text{End}(V) \cong V \otimes V^*$.
Motivation: Why line bundle cohomology?

From those short exact sequences of sums of line bundles one considers the induced long exact sequences of the sheaf cohomology, e.g.:

\[0 \rightarrow \mathcal{O}_X^{\oplus r} \rightarrow \bigoplus_k \mathcal{O}_X(D_k) \rightarrow T_X \rightarrow 0 \]

\[0 \rightarrow H^0(X; \mathcal{O}_X)^{\oplus r} \rightarrow \bigoplus_k H^0(X; \mathcal{O}_X(D_k)) \rightarrow H^0(X; T_X) \rightarrow \]

\[\rightarrow H^1(X; \mathcal{O}_X)^{\oplus r} \rightarrow \bigoplus_k H^1(X; \mathcal{O}_X(D_k)) \rightarrow H^1(X; T_X) \rightarrow \]

\[\rightarrow H^2(X; \mathcal{O}_X)^{\oplus r} \rightarrow \bigoplus_k H^2(X; \mathcal{O}_X(D_k)) \rightarrow H^2(X; T_X) \rightarrow \ldots \]

Everything boils down to the computation of line bundle cohomology.
Description of the algorithm

Ultimately, we are interested in computing \(\dim H^i(X; \mathcal{O}_X(D)) \).

Input data: toric variety \(X \)
- homogeneous coordinates \(H = \{x_1, \ldots, x_n\} \)
- associated GLSM charges \(Q^a_i \) for each \(x_i \)
- Stanley-Reisner ideal \(\text{SR} = \langle S_1, \ldots, S_N \rangle \)

Take a squarefree monomial \(Q = x_{i_1} \cdots x_{i_k} \) of the coordinates \(H \).

Consider monomials of the form

\[
R^Q(x_1, \ldots, x_n) = \frac{T(x_{j_1}, \ldots, x_{j_{n-k}})}{x_{i_1} \cdots x_{i_k} \cdot W(x_{i_1}, \ldots, x_{i_k})} \cdot Q \cdot W(x_{i_1}, \ldots, x_{i_k})^{-1} \cdot x_{i_1}^{-1} \cdots x_{i_k}^{-1}
\]

where \(T, W \) monomials

\[
= x_{j_1}^{\rho_{j_1}} \cdots x_{j_{n-k}}^{\rho_{j_{n-k}}} \cdot x_{i_1}^{-1-\rho_{i_1}} \cdots x_{i_k}^{-1-\rho_{i_k}}
\]
Description of the algorithm

Step 1: Count number of monomials with degree of D

\[
\mathcal{N}_D(Q) := \dim \left\{ R^Q : \deg_{GLSM} R^Q = D \right\}
\]

$Q = \text{squarefree monomial from the union of the coordinates in SR ideal generators}$

Determine to which cohomology group dimension $h^i(X; \mathcal{O}_X(D))$ the number $\mathcal{N}_D(Q)$ contributes.

$\rightarrow \text{Trace back how often the same } Q \text{ arises.}$

For each Q build up an **abstract simplex** $\Gamma^Q := \{ S \in SR : Q(S) = Q \}$ with k-faces

\[
F_k(\Gamma^Q) := \left\{ S \in \Gamma^Q : |S| = k + 1 \right\}.
\]
Description of the algorithm

\[\phi_k : F_k(\Gamma Q) \longrightarrow F_{k-1}(\Gamma Q) \]

\[e_\rho \mapsto \sum_{s \in \rho} \operatorname{sign}(s, \rho) e_{\rho-\{s\}} \]

defines the boundary mappings, where \(e_{\rho-\{s\}} = 0 \) if \(e_{\rho-\{s\}} \notin \Gamma Q \).

Step 2: Multiplicity factor and group contribution

Consider the (reduced) homology \(\tilde{H}_i(\Gamma Q) \) and define the multiplicity factors

\[h_i(Q) := \dim \tilde{H}_{|Q|-i-1}(\Gamma Q) \]

Those multiplicity factors are 0 or 1 in most cases—but not always. "Dirty trick": Via exactness it often suffices to determine just \(\dim F_k(\Gamma Q) \).
Algorithm overview

Dimension of line bundle sheaf cohomology

\[
\dim H^i(X; \mathcal{O}_X(D)) = \sum_{Q} \#(\text{suitable monomials } R^Q) \cdot h_i(Q) \cdot N_D(Q)
\]

where the sum ranges over square-free monomials from unions of SR generators.

1. Determine all monomials \(Q \) from unions of SR gens.
2. For each such \(Q \) compute the corresponding numbers of SR gen. combinations \(F_k(\Gamma^Q) \)
3. From those determine the multiplicity factors \(h_i(Q) \)
4. For each \(Q \) where \(h_i(Q) \neq 0 \) count the number of rational functions \(N_D(Q) \).
5. Sum over all relevant contributions \(h_i(Q) \cdot N_D(Q) \).

→ completely algorithmic
From the cohomology of a toric ambient space one can descent to the cohomology of a hypersurface, e.g. a Calabi-Yau hypersurface like $\mathbb{P}^4[5]$.

The Koszul sequence

Let S be a hypersurface (i.e. divisor) in a toric variety X and T be an arbitrary second divisor of X.

$$0 \rightarrow \mathcal{O}_X(T - S) \hookrightarrow \mathcal{O}_X(T) \rightarrow \mathcal{O}_S(T) \rightarrow 0.$$

- Line bundles on ambient space X
- Line bundle on hypersurface $S \subset X$

→ Compute $H^i(S; \mathcal{O}_S(T))$ via induced long exact cohomology sequence.

The complete intersection $S = S_1 \cap \cdots \cap S_t$ of several hypersurfaces $S_i \subset X$ can be handled by iteration.
Application: Finite group actions

The explicit form of the monomials R^Q contributing to $\dim H^i(X; \mathcal{O}_X(D))$ allows to consider finite group actions and the quotient’s cohomology.

First considered for \mathbb{Z}_2 orientifolds by Cvetic-García-Etxebarria-Halverson; arXiv:1009.5386

Equivariant structure on line bundles

Let G be a finite group acting holomorphically on X. The group element action $g : X \rightarrow X$ on the base space may be lifted to the bundle mapping $\phi_g : L \rightarrow L$. If

$$\phi_g \circ \phi_h = \phi_{gh}$$

this defines an equivariant structure.

\Rightarrow Apply involution on coordinates x_i directly to the monomials R^Q.

But: (projectively) equivalent involutions on the base generally define different equivariant structures!
Application: Finite group actions

\(G\)-action induces a splitting of the cohomology

\[H^i(X; \mathcal{O}_X(D)) = H^i_{\text{inv}}(X; \mathcal{O}_X(D)) \oplus H^i_{\text{non-inv}}(X; \mathcal{O}_X(D)) \]

The dimensions of those splittings can be computed by applying the uplifted \(G\)-action on the monomials counted in \(N_D(Q) = N_{\text{inv}} \oplus N_{\text{non-inv}}\).

Quotient space cohomology

\[h^i(X/G; \widehat{\mathcal{O}_X(D)}) = h^i_{\text{inv}}(X; \mathcal{O}_X(D)) = \sum Q h^i(Q) \cdot N_{D, \text{inv}}(Q) \]

bundle over the quotient space

Ex.: \(\mathcal{O}(-6) \longrightarrow \mathbb{CP}^2\) with \(\mathbb{Z}_3\)-action:

\[\phi_g : (x_1, x_2, x_3) \mapsto (\alpha x_1, \alpha^2 x_2, x_3) \]

where \(\alpha := \sqrt[3]{1} = e^{\frac{2\pi i}{3}}\)

inv: \(\frac{1}{x_4 x_2 x_3}\), non-inv: \(\frac{\alpha^2}{x_1^3 x_2^2 x_3}\)
Implementation: cohomCalg

cohomCalg

cohomCalg
high-speed, cross-platform C++ implementation cohomCalg
- Windows / Mac / Linux
- open source, GLPv3
- multi-core support

Google for cohomCalg

or try the core algorithm online:

cohomcalg.benjaminjurke.net

cohomCalg Koszul extension
Mathematica interface
- Hypersurfaces & complete intersections
- (co-)tangent bundle, $\Lambda^2 T^* S$
- Hodge diamond
- Monads
cohomCalg: del Pezzo-3 surface

Example: Line bundles on toric variety dP_3

The C++ core program takes care of the actual algorithm that computes line bundles on toric spaces.
Example: The resolved $\mathbb{P}_{11222}[8]$

```
In[181]:= P11222BlowUp = {
    (*Coordinates*) {v1, v2, v3, v4, v5, vX},
    (*Stanley Reisner*) {{v1, v2}, {v3, v4, v5, vX}},
    (*Equivalence Relations*) {{1, 0}, {1, 0}, {2, 1}, {2, 1}, {2, 1}, {0, 1}}
};
CalabiYauHyperSurface = {{8, 4}};
CohomologyOf["TangentBundle", P11222BlowUp, CalabiYauHyperSurface, "Calabi-Yau", "Verbose2"]
```

```
<table>
<thead>
<tr>
<th>$\mathcal{O}_S^{\oplus}$</th>
<th>$\bigoplus_{k=1}^n [\mathcal{O}_S[D_k]]$</th>
<th>$\mathcal{E}_S$</th>
<th>$\mathcal{E}_S$</th>
<th>$\mathcal{T}_S$</th>
<th>$\mathcal{E}_S$</th>
<th>$\bigoplus_{i=1}^l [\mathcal{O}_S[S_i]]$</th>
<th>$\mathcal{T}_S$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>$\mathcal{O}_S[1,0]^{\oplus 2} \oplus \mathcal{O}_S[2,1]^{\oplus 3} \oplus \mathcal{O}_S[0,1]$</td>
<td>A_21</td>
<td>21</td>
<td>0</td>
<td>21</td>
<td>104</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>A_22</td>
<td>3</td>
<td>21</td>
<td>3</td>
<td>0</td>
<td>86</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>A_23</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>A_24</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Calculation of TangentBundle cohomology done:

Total number of line bundles: 42
Newly computed: 18
Total time needed: 0.593 seconds
cohomCalc: Hodge diamond of a CICY 4-fold

Example: CICY 4-fold in the context of F-Theory GUT Vacua

The Mathematica frontend provides convenient functionality, utilizing the previously discussed methods.
Conclusions

Presented material

- An easy and efficient way to compute the line bundle cohomology of a toric variety.

- The algorithm implementation cohomCalg.

- Methods for the computation of various vector bundles on toric subspaces with a convenient Mathematica frontend.

- An extension of the algorithm to compute quotient space cohomology of a toric variety, i.e. methods to calculate line bundle cohomology on orbifolds and orientifolds.

Thank you!