Computational Tools for String Phenomenology
OR: The importance of cohomology group dimensions

Benjamin Jurke

Max-Planck-Institut für Physik
(Werner-Heisenberg-Institut)

Contents
- String pheno & cohomology
- Toric geometry 1-0-1
- Algorithm & Applications
- cohomCalc implementation

Boston (Northeastern University) — June 13, 2011

with R. Blumenhagen, T. Rahn, H. Roschy

- Algorithm: arXiv:1003.5217
- Applications: arXiv:1010.3717
Part 1

Motivation:
String phenomenology & cohomology groups
I. Motivation: Type II string models

In Type II string models intersecting D-branes and gauge fluxes are required in order to generate chiral matter.

Example: $U(1)$ gauge flux on D7s

D_a, D_b two stacks of D7s intersecting over curve $C = D_a \cap D_b$, matter in the bifundamental (\bar{N}_a, N_b) is counted by

$$H^i(C; L^\vee_a \otimes L_b \otimes K^{\frac{1}{2}}_C).$$

The chiral index gives the net number of chiral states:

$$I_{ab}^{loc} = \chi(C; L^\vee_a \otimes L_b \otimes K^{\frac{1}{2}}_C) = \int_X [D_a] \wedge [D_b] \wedge (c_1(L_a) - c_1(L_b))$$

[Blumenhagen-Körs-Lüst-Stieberger '06, Blumenhagen-Braun-Grimm-Weigand '08]
Euclidean D-brane instantons (E-branes) are entirely wrapped around the compactified dimensions, i.e. pointlike from the 4d perspective.

Example: Zero modes counting for E3-brane instanton

<table>
<thead>
<tr>
<th>zero modes</th>
<th>number</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_μ, θ_α</td>
<td>1</td>
</tr>
<tr>
<td>$\bar{\tau}_{\bar{\alpha}}$</td>
<td>0</td>
</tr>
<tr>
<td>γ_α</td>
<td>$h^{1,0}_+ (E)$</td>
</tr>
<tr>
<td>w, $\bar{\gamma}_{\bar{\alpha}}$</td>
<td>$h^{1,0}_- (E)$</td>
</tr>
<tr>
<td>χ_α</td>
<td>$h^{2,0}_+ (E)$</td>
</tr>
<tr>
<td>c, $\bar{\chi}_{\bar{\alpha}}$</td>
<td>$h^{2,0}_- (E)$</td>
</tr>
</tbody>
</table>

Self-invariant $O(1)$ instanton

[Blumenhagen-Cvetic-Kachru-Weigand '08]
I. Motivation: E3/M5-instanton matching

Type IIB E3-brane instanton zero modes can be matched to vertical M5-brane instantons in F-theory.

Example: Zero modes matching for E3/M5-brane instantons
I. Motivation: Heterotic string models

In heterotic string modes on the Calabi-Yau 3-fold \mathcal{X} a (stable, holomorphic) vector bundle breaks the gauge group $E_8 \times E_8$ or $SO(32)$.

Example: $SU(5)$ model in heterotic string theory

Let $\mathcal{X} = \mathbb{P}^4[5]$ be the quintic Calabi-Yau 3-fold. The monad

$$
0 \longrightarrow V \longrightarrow \mathcal{O}_\mathcal{X}(2)^{\oplus 5} \oplus \mathcal{O}_\mathcal{X}(1)^{\oplus 5} \longrightarrow \mathcal{O}_\mathcal{X}(3)^{\oplus 5} \longrightarrow 0
$$

describes an $SU(5)$-bundle, yielding a $SU(5)$ GUT of the $E_8 \times E_8$ heterotic string (after modding out $\mathbb{Z}_5 \times \mathbb{Z}_5$). The particle spectrum is given by:

- $\eta_{10} = h^1(\mathcal{X}; V)$
- $\eta_{10} = h^1(\mathcal{X}; V^*)$
- $\eta_5 = h^1(\mathcal{X}; \Lambda^2 V)$
- $\eta_5 = h^1(\mathcal{X}; \Lambda^2 V^*)$

[Anderson-Gray-He-Lukas '09]
I. Motivation: Why line bundle cohomology?

In all mentioned examples the phenomenological aspects are ultimately determined by the dimension of vector-bundle-valued cohomology groups.

In fact: Most vector bundles are constructed as monads from line bundles

\[0 \rightarrow V \leftarrow \bigoplus_j \mathcal{O}_X(b_j) \rightarrow \bigoplus_k \mathcal{O}_X(c_k) \rightarrow 0 \]

Examples of monads

- The **tangent bundle** \(T_X \) of toric varieties is a monad.
- The **vector bundle moduli** can be computed from \(\text{End}(V) \cong V \otimes V^* \).

Important tool: **Exactness of sequences**, i.e. \(\text{image}(f_i) = \text{kernel}(f_{i+1}) \).

If a sequence is **exact**, the location of dimension-0 spaces often suffices to determine isomorphisms, which makes computations a lot easier.
I. Motivation: Why line bundle cohomology?

From short exact sequences of sums of line bundles one considers the induced long exact sequences of the cohomology, e.g.:

\[0 \to \mathcal{O}_X^{\oplus r} \to \bigoplus_k \mathcal{O}_X(D_k) \to T_X \to 0 \]

\[\downarrow \]

\[0 \to \bigoplus_k H^0(X; \mathcal{O}_X(D_k)) \to H^0(X; T_X) \to \bigoplus_k H^1(X; \mathcal{O}_X(D_k)) \to H^1(X; T_X) \to \bigoplus_k H^2(X; \mathcal{O}_X(D_k)) \to H^2(X; T_X) \to \ldots \]
I. Motivation: ...resumé?!

From a phenomenologists point of view, everything boils down to the computation of line bundle-valued cohomology group dimension $h^i(X; L_X)$. What to do?

Known methods

- **Isomorphisms**: If you can find isomorphisms to spaces with known cohomology, you don’t have to compute anything.

- **Spectral sequences**: The method of spectral sequences allows to compute the cohomology of general spaces, but it is extremely laborious to work with.

→ Find a new method to compute line bundle cohomology!
Part 2

- Basics of toric geometry

My kind of "Toric Variety."
Reminder: Complex projective space

\(\mathbb{P}^n \) is constructed as a quotient space. The coordinates \(x_0, \ldots, x_n \) of \(\mathbb{C}^{n+1} \) are subject to the \(\mathbb{C}^\times \)-action

\[
(x_0, \ldots, x_n) \mapsto (\lambda x_0, \ldots, \lambda x_n) \quad \text{for all } \lambda \in \mathbb{C}^\times,
\]

if the origin \(0 \in \mathbb{C}^{n+1} \) is removed, thus \(\mathbb{P}^n = \frac{\mathbb{C}^{n+1} - \{0\}}{\mathbb{C}^\times} \).

Weighted projective space

Generalize the \(\mathbb{C}^\times \)-action by changing the powers of \(\lambda \):

\[
(x_0, \ldots, x_n) \mapsto (\lambda^{Q_0} x_0, \ldots, \lambda^{Q_n} x_n) \quad \text{for all } \lambda \in \mathbb{C}^\times,
\]

giving \(\mathbb{P}^n_{Q_0, \ldots, Q_n} \). Note that \(\mathbb{P}^n = \mathbb{P}^n_{1, \ldots, 1} \).
Use several \mathbb{C}^\times-actions with different weights. The powers are given by charges Q^a_k such that

$$
(x_0, \ldots, x_n) \mapsto \left((\lambda_1^{Q^1_0} \cdots \lambda_r^{Q^r_0}) x_0, \ldots, (\lambda_1^{Q^1_n} \cdots \lambda_r^{Q^r_n}) x_n \right) \quad \text{for } \lambda_i \in \mathbb{C}^\times,
$$

defines a $(\mathbb{C}^\times)^r$-action. Instead of just the origin, a set Z has to be removed from \mathbb{C}^{n+r}.

The **toric variety** is then

$$
\mathcal{X} = \frac{\mathbb{C}^{n+r} - Z}{(\mathbb{C}^\times)^r}
$$

There is an alternative, entirely combinatorial perspective on toric varieties that makes this kind of geometry ideally suited for algorithmic treatments.
Stanley-Reisner ideal

The Stanley-Reisner ideal encodes sets of coordinates x_i that are **NOT** allowed to vanish simultaneously. It can be generated by squarefree monomials S_j, which are the products of those coordinates:

$$SR(X) = \{x_{k_1} \cdots x_{k_p} : \{x_{k_1}, \ldots, x_{k_p}\} \in \mathbb{Z}\} = \langle S_1, \ldots, S_t \rangle$$

Example: $SR(\mathbb{P}^2) = \langle x_0 x_1 x_2 \rangle$ encondes the removed origin.

Divisors on toric varieties

A divisor on a toric variety is basically a **formal sum of codimension-1 hypersurfaces**. With respect to the chosen coordinates x_0, \ldots, x_n of X, one frequently uses the divisors $D_i := \{x_i = 0\} \subset X$.
II. Toric Geometry 1-0-1: Line bundles

From the projective powers Q_k^a of a toric variety (called GLSM charges in a different context) one can directly read off the classes of the divisors D_i.

Example: $\mathbb{P}^2 = \mathbb{P}_{1,1,1}^2$ has just one projective relation and each power is $Q_{1}^1 = 1$. Thus $[D_1] = [D_2] = [D_3] = H$.

Example: The del Pezzo-1 surface (single blowup of \mathbb{P}^2) has two projective relations:

<table>
<thead>
<tr>
<th>coords</th>
<th>powers</th>
<th>divisor class</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>Q^1</td>
<td>H</td>
</tr>
<tr>
<td>x_2</td>
<td>Q^2</td>
<td>H</td>
</tr>
<tr>
<td>x_3</td>
<td>Q^1</td>
<td>$H + X$</td>
</tr>
<tr>
<td>x_4</td>
<td>Q^2</td>
<td>X</td>
</tr>
</tbody>
</table>

Divisors & line bundles

Line bundles $\mathcal{O}(D)$ and divisor D are in a direct correspondence:

$\text{divisor classes} \cong \text{line bundle classes}$
What now?

Part 3

- An **algorithm** to compute line bundle-valued cohomology group dimensions

Remember: Ultimately, we are interested in computing \(\dim H^i(X; O_X(D)) \).

[2 × Blumenhagen-Jurke-Rahn-Roschy '10, Rahn-Roschy '10, Jow '10]
III. Algorithm: Description

Input data: toric variety X

- homogeneous coordinates $H = \{x_1, \ldots, x_n\}$
- associated GLSM charges Q^a_i for each x_i
- Stanley-Reisner ideal $SR = \langle S_1, \ldots, S_N \rangle$

Basic idea of the algorithm

Count monomials of a specific form which carry the same GLSM charge as the divisor D specifying the line bundle $\mathcal{O}_X(D)$.

But: One also has to determine to which cohomology group dimension $h^i(X; \mathcal{O}_X(D))$ (i.e. to which degree i) this counting contributes.
III. Algorithm: Description

Take a squarefree monomial $Q = x_{i_1} \cdots x_{i_k}$ of the coordinates H.

Consider monomials of the form

$$R^Q(x_1, \ldots, x_n) = \frac{T(x_{j_1}, \ldots, x_{j_{n-k}})}{x_{i_1} \cdots x_{i_k}} \cdot W(x_{i_1}, \ldots, x_{i_k})$$

T, W monomials

$$= x_{j_1}^{\rho_{j_1}} \cdots x_{j_{n-k}}^{\rho_{j_{n-k}}} \cdot x_{i_1}^{-1-\rho_{i_1}} \cdots x_{i_k}^{-1-\rho_{i_k}}$$

- Coordinates in Q have negative powers ≤ -1
- Remaining coordinates in $H \setminus Q$ have positive powers ≥ 0
III. Algorithm: Description

Step 1: Count number of monomials with degree of D

$$\mathcal{N}_D(Q) := \dim \{ R^Q : \deg_{\text{GLSM}} R^Q = D \}$$

$Q =$ squarefree monomial from the union of the coordinates in SR ideal generators

Determine to which cohomology group dimension $h^i(X; \mathcal{O}_X(D))$ the number $\mathcal{N}_D(Q)$ contributes.

Trace back how often the same Q arises.

For each Q build up an abstract simplex $\Gamma^Q := \{ S \subset SR : Q(S) = Q \}$ with k-faces

$$F_k(\Gamma^Q) := \{ S \in \Gamma^Q : |S| = k + 1 \}.$$
III. Algorithm: Description

\[\phi_k : F_k(\Gamma^Q) \rightarrow F_{k-1}(\Gamma^Q) \]

\[e_\rho \mapsto \sum_{s \in \rho} \text{sign}(s, \rho) e_{\rho-\{s\}} \]

defines the boundary mappings, where \(e_{\rho-\{s\}} = 0 \) if \(e_{\rho-\{s\}} \notin \Gamma^Q \).

Step 2: Multiplicity factor and group contribution

Consider the (reduced) homology \(\tilde{H}_*(\Gamma^Q) \) and define the multiplicity factors

\[h_i(Q) := \dim \tilde{H}_{|Q|-i-1}(\Gamma^Q) \]

Those multiplicity factors are 0 or 1 in most cases—but not always.

“Dirty trick”: Via exactness it often suffices to determine just \(\dim F_k(\Gamma^Q) \).
III. Algorithm: Overview

Dimension of line bundle sheaf cohomology

\[
\dim H^i(X; \mathcal{O}_X(D)) = \sum_{Q} h_i(Q) \cdot N_D(Q)
\]

- # (suitable monomials \(R^Q \)) sum ranges over square-free monomials from unions of SR generators

1. Determine all monomials \(Q \) from unions of SR gens.
2. For each such \(Q \) compute the corresponding numbers of SR gen. combinations \(F_k(\Gamma^Q) \)
3. From those determine the multiplicity factors \(h_i(Q) \)
4. For each \(Q \) where \(h_i(Q) \neq 0 \) count the number of rational functions \(N_D(Q) \).
5. Sum over all relevant contributions \(h_i(Q) \cdot N_D(Q) \).

\[\rightarrow \text{completely algorithmic} \]
Part 4

- Applications
- Cohomology of subvarieties
- Tangent bundle of complete intersections
- Finite group actions (orbifolds & orientifolds)

[Blumenhagen-Jurke-Rahn-Roschy '10]
From the cohomology of a toric ambient space one can descent to the cohomology of a hypersurface, e.g. a Calabi-Yau hypersurface like $\mathbb{P}^4[5]$.

The Koszul sequence

Let S be a hypersurface (i.e. divisor) in a toric variety X and T be an arbitrary second divisor of X.

\[
0 \longrightarrow \mathcal{O}_X(T - S) \longrightarrow \mathcal{O}_X(T) \longrightarrow \mathcal{O}_S(T) \longrightarrow 0.
\]

- line bundles on ambient space X
- line bundle on hypersurface $S \subset X$

\implies Compute $H^i(S; \mathcal{O}_S(T))$ via induced long exact cohomology sequence.

The complete intersection $S = S_1 \cap \cdots \cap S_t$ of several hypersurfaces $S_i \subset X$ can be handled by iteration.
IV. Applications: **Tangent bundle of hypersurfaces**

On a complete intersection $S = S_1 \cap \cdots \cap S_t$ the tangent bundle T_S can be described via two short exact sequences:

The split Euler sequence

\[
0 \longrightarrow \mathcal{O}_S^\oplus r \longrightarrow \bigoplus_{k=1}^n \mathcal{O}_S(D_k) \longrightarrow \mathcal{E}_S \longrightarrow 0
\]

\[
0 \longrightarrow T_S \longrightarrow \mathcal{E}_S \longrightarrow \bigoplus_{i=1}^t \mathcal{O}_S(S_i) \longrightarrow 0
\]

Use the Koszul sequence to compute the cohomology dimensions $h^i(S; \mathcal{O}_S(T))$ from the cohomology of X.

→ Laborious, but in principle “straightforward”.

Benjamin Jurke (MPI für Physik)
In orbifold or orientifold constructions one has a discrete finite symmetry acting on the space-time and considers the quotient space.

Consider the invariant part of the cohomology.

Equivariant structure on line bundles

Let G be a finite group acting holomorphically on X. The group element action $g : X \rightarrow X$ on the base space may be lifted to the bundle mapping $\phi_g : L \rightarrow L$. If

$$\phi_g \circ \phi_h = \phi_{gh}$$

this defines an equivariant structure.

This gives a splitting of the cohomology classes:

$$H^i(X; \mathcal{O}_X(D)) = H^i_{\text{inv}}(X; \mathcal{O}_X(D)) \oplus H^i_{\text{non-inv}}(X; \mathcal{O}_X(D)).$$

[Cvetic-García-Etxebarria-Halyerson '10]
The dimensions of those splittings can be computed by applying the uplifted G-action on the monomials counted in $\mathcal{N}_D(Q) = \mathcal{N}_{\text{inv}} \oplus \mathcal{N}_{\text{non-inv}}$.

Note that the multiplicity factors $h_i(Q)$ remain unchanged!

\Rightarrow Rather simple to compute!
Consider the following \mathbb{Z}_3-action on \mathbb{P}^2:

$$g_1 : (x_1, x_2, x_3) \mapsto (\alpha x_1, \alpha^2 x_2, x_3) \quad \text{for} \quad \alpha := \sqrt[3]{1} = e^{\frac{2\pi i}{3}}.$$

Due to the projective equivalence $(x_1, x_2, x_3) \sim (\lambda x_1, \lambda x_2, \lambda x_3)$ between the homogeneous coordinates x_i this base involution is equivalent to

$$g_2 : (x_1, x_2, x_3) \mapsto (x_1, \alpha x_2, \alpha^2 x_3)$$

$$g_3 : (x_1, x_2, x_3) \mapsto (\alpha^2 x_1, x_2, \alpha x_3),$$

The same coordinates form the monomials R^Q used in the algorithm.

Involution mapping can be applied to the monomials.

Choose g_1 to be the equivariant structure. For fixpoint-free actions (yielding smooth quotients) all equivariant structures are equivalent.
IV. Applications: Example: $\mathbb{CP}^2/\mathbb{Z}_3$

Apply action to monomials that contribute to the cohomology and read off the corresponding parts by their phases.

Example: Monomials for $\mathcal{O}(-6)$ using g_1, i.e. $(x_1, \alpha x_2, \alpha^2 x_3)$:

\[
\begin{align*}
\frac{1}{\alpha^4 u_1^4 \alpha^2 u_2 u_3}, & \quad g_1 \rightarrow 1 \\
\frac{1}{\alpha u_1 \alpha^8 u_2^4 u_3}, & \quad g_1 \rightarrow 1 \\
\frac{1}{\alpha^2 u_1^2 \alpha^6 u_2^6 u_3}, & \quad g_1 \rightarrow \alpha^2 \\
\frac{1}{\alpha u_1 \alpha^6 u_2^3 u_3}, & \quad g_1 \rightarrow \alpha \\
\frac{1}{\alpha^2 u_1^2 \alpha^2 u_2^2 u_3}, & \quad g_1 \rightarrow \alpha \\
\frac{1}{\alpha^3 u_1^3 \alpha^4 u_2^2 u_3}, & \quad g_1 \rightarrow \alpha^2 \\
\frac{1}{\alpha u_1 \alpha^4 u_2^2 u_3}, & \quad g_1 \rightarrow \alpha \\
\frac{1}{\alpha^2 u_1 \alpha^4 u_2^2 u_3}, & \quad g_1 \rightarrow 1
\end{align*}
\]

Result:

\[
h^2(\mathbb{P}^2; \mathcal{O}(-6)) = (4_{\text{inv}}, 3\alpha, 3\alpha^2) \quad \rightarrow \quad h^2(\mathbb{P}^2/\mathbb{Z}_3; \mathcal{O}(-6)) = 4
\]
Now: Make it simple & easy to use!

Part 5

- Algorithm implementation cohomCalc
- Outlook
V. Implementation: **cohomCalg**

cohomCalg

- fast sheaf cohomology computation for line bundles on toric varieties

Koszul extension

→ **Google** for **cohomCalg**

or try the core algorithm online:

→ **cohomcalg.benjaminjurke.net**

cohomCalg

- high-speed, cross-platform
- C++ implementation **cohomCalg**
 - Windows / Mac / Linux
 - open source, GLPv3
 - multi-core support

cohomCalg Koszul extension

- Mathematica interface
 - Hypersurfaces & complete intersections
 - (co-)tangent bundle, $\Lambda^2 T^* S$
 - Hodge diamond
 - Monads
Example: Line bundles on toric variety dP_3

The C++ core program takes care of the actual algorithm that computes line bundles on toric spaces.
V. Implementation: Tangent bundle cohomology of hypersurface

Example: The resolved \(\mathbb{P}_{11222}^8 \)

```
In[181]:= P11222BlowUp = {
    (*Coordinates*){v1, v2, v3, v4, v5, vX},
    (*Stanley Reisner*){{v1, v2}, {v1, v2}},
    (*Equivalence Relations*){{1, 0}, {1, 0}, {2, 1}, {2, 1}, {2, 1}, {0, 1}}
};
CalabiYauHyperSurface = {{8, 4}};
CohomologyOf["TangentBundle", P11222BlowUp, CalabiYauHyperSurface, "Calabi-Yau", "Verbose2"]
```

<table>
<thead>
<tr>
<th>(O_S^{\oplus} \oplus \bigoplus_{k=1}^n [O_S[D_k]])</th>
<th>(E_S)</th>
<th>(T_S)</th>
<th>(E_S)</th>
<th>(\bigoplus_{i=1}^l [O_S[S_i]])</th>
<th>(T_S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(O_S[1,0] \oplus O_S[2,1] \oplus O_S[0,1])</td>
<td>2 (A_{21})</td>
<td>21</td>
<td>0</td>
<td>21</td>
<td>104</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>3</td>
<td>21</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Calculation of TangentBundle cohomology done:

Total number of line bundles: 42
Newly computed: 18
Total time needed: 0.593 seconds
V. Implementation: Hodge diamond of a CICY 4-fold

CICY 4-fold in the context of F-Theory GUT Vacua

\[
\begin{align*}
\text{Example4Fold} &= \{ \\
&\{v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8, v_9, v_{10}\}, \\
&\{v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8, v_9, v_{10}\}, \\
&\{v_1, v_2, v_3, v_4, v_5, v_6, v_10\}, \\
&\{v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8, v_9, v_{10}\}, \\
&\{v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8, v_9, v_{10}\}, \\
&\{v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8, v_9, v_{10}\}\}, \\
\text{CompleteIntersection} &= \{\{6, 6, 6, 0\}, \{0, 0, 2, 1, 1\}\}; \\
\text{CohomologyOf} &= \{\text{"HodgeDiamond"}, \text{Example4Fold}, \text{CompleteIntersection}, \text{"Calabi-Yau"}\}
\end{align*}
\]

Calculation of HodgeDiamond cohomology done:

Total number of line bundles: 478
Newly computed: 264
Total time needed: 31.233 seconds

\[\chi = 6768\]

[Grimm-Krause-Weigand ’09]

The Mathematica frontend provides convenient functionality, utilizing the previously discussed methods.
Conclusions

Presented material

- An easy and efficient way to compute line bundle-valued cohomology group dimensions of a toric variety.

- The algorithm implementation `cohomCalc`.

- Methods for the computation of various vector bundles on toric subspaces with a convenient Mathematica frontend.

- An extension of the proposed algorithm to compute quotient space cohomology of a toric variety, i.e. methods to calculate line bundle cohomology on orbifolds and orientifolds.
Related work in progress & ideas

- Exploration of target space duality in \((0, 2)\) het. models.
 [Blumenhagen-Rahn '11 (upcoming)]

- Construction and analysis of new Calabi-Yau 3-folds.
 [Jurke-Rahn '11 (upcoming)]
Outlook

Long term applications

- Scans over extremely large string landscape sets and analysis of various phenomenological properties...

➞ Cloud computing!

The end
Long term applications

- Scans over extremely large string landscape sets and analysis of various phenomenological properties...

→ Cloud computing!

The end

...well, not quite yet!
Part 6

- What is “the Cloud”?
- How can it be utilized for science?
VI. Cloud Computing: Performance vs. Costs

→ Over time: “More bang for the buck!”
VI. Cloud Computing: What is “the Cloud”?

PDP-10 ➔ PC ➔ ?

- 1966: PDP-10 — First computer that made time-sharing common!
 ➔ Small terminals accessing huge mainframe
- 1981: IBM PC — First computer for personal / private home use!
 ➔ Small independent versatile powerhouses
- Late 2000s: More and more services remotely accessed.
 ➔ A step back?
The improvements in computer speed allow to raise the level of abstraction by a huge margin. Classical approaches like time sharing are replaced by true virtualization.

Virtualization

A virtual machine simulates all relevant structures of a computer. From a programmers perspective one effectively operates on an entirely separate computer.

- One no longer has to care about the hardware details of the machine!

On modern machines the performance losses of virtualization for most applications are no longer significant.

- True detachment of hardware and software!
VI. Cloud Computing: Remote (Super-)Computing — Pros

Using virtualization one can effectively rent a remote computer and for all practical purposes operate on it similar to a local machine.

- **Maintenance**: One big centralized computer cluster is much easier to maintain than thousands of smaller systems.
- **Load spikes & uptime**: Since a virtual machine is not bound to specific hardware, one can easily move it to a different machine or (dynamically) associate more hardware to it.
- **Costs**: Due to dynamic allocation of resources, the actual hardware is more efficiently used.
However, there are also new challenges to be faced:

- **Restrictions**: The virtualization may be limited to certain specific (virtual) operating systems, which makes it challenging (or impossible) to use existing software.

- **Security**: The data is no longer “at home”, privacy questions arise.

Do those limitations largely affect *scientific* computing?
NSF grant to B. Nelson, J. Gray, Y.-H. He and V. Jejjala to utilize the **Microsoft Azure cloud platform** for computational problems relevant for string theory.