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Part 1

o Motivation:
String phenomenology & cohomology groups
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. Motivation: Type Il string models

In Type Il string models intersecting D-branes and gauge fluxes are
required in order to generate chiral matter.

Example: U(1) gauge flux on D7s

D,, Dy two stacks of D7s intersecting over curve C' = D, N Dy,
matter in the bifundamental (N,, ;) is counted by

. 1
HYC;LY ® L, ® K2).
The chiral index gives the net number of chiral states:
1
Iy = x(C; L ® Ly ® K2)

RRH_ /X [Da] A [Dy] A (c1(La) — c1(Ly))

[Blumenhagen-Kors-Liist-Stieberger '06, Blumenhagen-Braun-Grimm-Weigand '08]
4
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. Motivation: D-brane instanton counting

Euclidean D-brane instantons (E-branes) are entirely wrapped around
the compactified dimensions, i.e. pointlike from the 4d perspective.

Example: Zero modes counting for E3-brane instanton

zero modes ‘ number
(X1, 0a) 1
TE 0

Ve hio(E)

(w,¥a) h°(E)

X hio(E)

(¢, Xa) h*°(E)

Self-invariant
O(1) instanton

E3(ﬁ string

AVG

ok

E

VAW

[Blumenhagen-Cvetic-Kachru-Weigand '08]
V.

zero modes | number
X, 1
O 1
Té 1
(w,7a,7s) | RVO(E)
(¢, XasXa) | B*°(E)
Generic

U(1) instanton
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|. Motivation: E3/Mb-instanton matching

Type IIB E3-brane instanton zero modes can be matched to vertical
Mb5-brane instantons in F-theory.

Example: Zero modes matching for E3/Mb5-brane instantons

103 (M5)
elliptic fiber 0.2 /
= W22 (E3)
(=) 102 (3) —hO2(M5)
i1 N\ BT\ )
i\ s\ K0 (E3) — ho (M)
rojection instanton 7-plane
proj XS /
Bs = Xg/o’ “upstairs” geometry h070 (E3)
“downstairs” geometry (Calabi-Yau 3-fold) 0.0 . ho’o (M 5)
F-theory perspective Type-IIB perspective h+ (EB)
[Blumenhagen-Jurke-Collinucci '10]
”
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. Motivation: Heterotic string models

In heterotic string modes on the Calabi-Yau 3-fold X" a (stable,
holomorphic) vector bundle breaks the gauge group Eg x Eg or
SO(32).

Example: SU(5) model in heterotic string theory
Let X = P*[5] be the quintic Calabi-Yau 3-fold. The monad

00—V 0x(2)®0x1)% — 0x(3)%° —0

describes an SU(5)-bundle, yielding a SU(5) GUT of the Eg x Eg
heterotic string (after modding out Zs x Zs). The particle spectrum is
given by:

mo = h'(X;V) ns = b1 (X; A?V)
g =R (V) g =X APV
QOUGE D&L

[Anderson-Gray-He-Lukas '09]
V.
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|. Motivation: Why line bundle cohomology?

In all mentioned examples the phenomenological aspects are ultimately
determined by the dimension of vector-bundle-valued cohomology groups.

In fact: Most vector bundles are constructed as monads from line bundles

0—V— POxb;) — @ Ox(cx) — 0
7 k

Examples of monads

@ The tangent bundle T’y of toric varieties is a monad.

@ The vector bundle moduli can be computed from
End(V) =V @ V*.

Important tool: Exactness of sequences, i.e. image(f;) = kernel(fi+1).

If a sequence is exact, the location of dimension-0 spaces often suffices to
determine isomorphisms, which makes computations a lot easier.
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|. Motivation: Why line bundle cohomology?

From short exact sequences of sums of line bundles one considers the
induced long exact sequences of the cohomology, e.g.:

0—>(’)§'§" <—>@ Ox(Dg) — Ty — 0
k
\

0 —— HO(X; 0x)"" — @ H(X; Ox(Dy)) —= H°(X; Tx)
k

CHHI(X;OX)@T H?HI(X;OX(DM) — H'(X;Tx)

J U

C—>H2(X;(’)X)@" H?HQ(X;OX(D;C)) ——> H*(X;Ty) — ...
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|. Motivation: ...resumé?!

From a phenomenologists point of view, everything boils down to the
computation of line bundle-valued cohomology group dimension
h'(X; Lx). What to do?

Known methods

@ Isomorphisms: If you can find isomorphisms to spaces
with known cohomology, you don't have to compute
anything.

@ Spectral sequences: The method of spectral sequences
allows to compute the cohomology of general spaces, but
it is extremely laborious to work with.

= Find a new method to compute line bundle cohomology!

Benjamin Jurke (MPI fiir Physik) Computational Tools Boston; Jun 13, 2010


http://benjaminjurke.net

Part 2

@ Basics of toric geometry

oo

My kind o Toric Vbwielyy”



II. Toric Geometry 1-0-1: Projective spaces

Reminder: Complex projective space

P™ is constructed as a quotient space. The coordinates
xo, . .., xp of C"*1 are subject to the C*-action

(Zoy -y xn) — (Axg, ..., Axy) forall A € CX,

(CnJrl {0}

if the origin 0 € C"*! is removed, thus P" = o

Weighted projective space

Generalize the C*-action by changing the powers of \:
(20, .- -, xn) = (A\P20,...,\9z,) forall A e CX,

giving P5) o, . Note that P" =P} ;.
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Il. Toric Geometry 1-0-1: loric varieties

Use several C*-actions with different weights. The powers are given by
charges @f such that

(@0, -, Zp) <()\?(1) M)z, AP A%z, for A € T,

defines a (C*)"-action. Instead of just the
origin, a set Z has to be removed from C"*7".
The toric variety is then

n+r __
P
()

4

There is an alternative, entirely combinatorial perspective on toric varieties
that makes this kind of geometry ideally suited for algorithmic treatments.
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1. Toric Geometry 1-0-1: SR ideal & divisors

Stanley-Reisner ideal

The Stanley-Reisner ideal encodes sets of coordinates x; that are NOT
allowed to vanish simultaneously. It can be generated by squarefree
monomials S;, which are the products of those coordinates:

SR(X) = {SL‘kl'-'.Ikp ATkyy - Ty ) € Z}
== <81,...,St>

Example: SR(P?) = (z¢z172) encondes the removed origin.

Divisors on toric varieties

A divisor on a toric variety is basically a formal sum of codimension-1
hypersurfaces. With respect to the chosen coordinates g, . .., z, of X,
one frequently uses the divisors D; := {z; = 0} C X.

Boston; Jun 13, 2010 13 /35

Benjamin Jurke (MPI fiir Physik) Computational Tools


http://benjaminjurke.net

Il. Toric Geometry 1-0-1: Line bundles

From the projective powers @} of a toric variety (called GLSM charges in
a different context) one can directly read off the classes of the divisors D;.

Example: P2 — P%,l,l has just one projective coords | powers divisor
relation and each power is Q}C =1. Thus Q' Q7 class
[D1] = [Ds] = [Ds] = H. 1 1 0 H
Example: The del Pezzo-1 surface (single : 1 S HIZX
blowup of P2) has two projective relations:

T4 0 1 X

Divisors & line bundles

Line bundles O(D) and divisor D are in a direct correspondence:

divisor classes = line bundle classes

Benjamin Jurke (MPI fiir Physik) Computational Tools Boston; Jun 13, 2010 14 / 35
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What now?

Part 3

@ An algorithm to compute line
bundle-valued cohomology group
dimensions

Remember: Ultimately, we are interested in
computing dim H*(X; Ox(D)).

[2x Blumenhagen-Jurke-Rahn-Roschy '10, Rahn-Roschy '10, Jow '10]



lll. Algorithm: Description

Input data: toric variety X

@ homogeneous coordinates H = {x1,..., 2}
@ associated GLSM charges Q¢ for each xz;
o Stanley-Reisner ideal SR = (S1,...,Sn)

Basic idea of the algorithm

Count monomials of a specific form which carry the
same GLSM charge as the divisor D specifying the line
bundle Ox (D).

But: One also has to determine to which cohomology group dimension
h'(X; Ox (D)) (i.e. to which degree i) this counting contributes.
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lll. Algorithm: Description

Take a squarefree monomial Q = x;, - - - x;, of the coordinates H.

k

Consider monomials of the form

complement coordinates H \ QO

7( )

J}jl, 00 o 7xjn—k-

R9(xy1,...,2p) = T, W monomials

.%‘Z'l 00 -xik ° W(xil, 500 ,:L'Z'k)
———
Q coordinates in Q

Piv . Pin—k _~l=piy 'xflfpik
Ji Jn—k 1 ik
Vv
positive powers > (0  negative powers < —1

@ Coordinates in Q have negative powers < —1

@ Remaining coordinates in H \ Q have positive powers > 0
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lll. Algorithm: Description

Step 1: Count number of monomials with degree of D

squarefree monomial
_ from the union of
~ the coordinates in
SR ideal generators

Np(Q) :=dim {R? : degqrgq R€ =D} | ©Q

Determine to which cohomology group dimension h(X; Ox (D)) the

number Np(Q) contributes.
= Trace back how often the same Q arises.

For each Q build up an abstract simplex I'? := {S c SR : Q(S) = Q}
with k-faces
F(T9):={SeT?:|S|=k+1}.

Benjamin Jurke (MPI fiir Physik) Computational Tools Boston; Jun 13, 2010 18 / 35
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lll. Algorithm: Description

i« Fi(T9) — Fj_1(

6p'—>ZSIgHSP €p—{s} A AWDV

sEp

defines the boundary mappings, where e, (o =0 if e, ¢, & re.

Step 2: Multiplicity factor and group contribution

Consider the (reduced) homology H,(I'?) and define the multiplicity
factors

hi(Q) := dim Hig| ;1 (T'°)

Those multiplicity factors are 0 or 1 in most cases—but not always.

“Dirty trick": Via exactness it often suffices to determine just dim F},(I'<).
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lII. Algorithm: Overview

Dimension of line bundle sheaf cohomology

#(suitable monomials R2) sum ranges over square-

dim H(X; Ox(D Zf) (Q) free  monomials from

15 unions of SR generators
mu|t|pI|C|ty factor

@ Determine all monomials Q © For each Q where h;(Q) # 0
from unions of SR gens. count the number of rational
@ For each such Q compute the functions Np(Q).
corresponding numbers of SR © Sum over all relevant
gen. combinations Fj,(I'?) contributions b;(Q) - N'p(Q).

© From those determine the

multiplicity factors b;(Q) = completely algorithmic
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Part 4

o Applications
@ Cohomology of subvarieties
@ Tangent bundle of complete intersections

o Finite group actions (orbifolds & orientifolds)

[Blumenhagen-Jurke-Rahn-Roschy '10]



IV. Applications: Hypersurfaces & the Koszul sequence

From the cohomology of a toric ambient space one can descent to the
cohomology of a hypersurface, e.g. a Calabi-Yau hypersurface like P4[5].

The Koszul sequence

Let S be a hypersurface (i.e. divisor) in a toric variety X and 7" be
an arbitrary second divisor of X.

0— Ox(T—95)— Ox(T) — Og(T) — 0.

N——
line bundles on line bundle on
ambient space X hypersurface S C X

v

— Compute H'(S;Og(T)) via induced long exact cohomology sequence.

The complete intersection S = S1 N --- N S; of several hypersurfaces
S; C X can be handled by iteration.
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IV. Applications: Tangent bundle of hypersurfaces

On a complete intersection S = S N ---N.S; the tangent bundle T can
be described via two short exact sequences:

The split Euler sequence

coordinate divisors

—
0— O?T — @Os(Dk) —»55 — 0
k=1

t
0—>T5‘—>55—»@ 0s(S;) — 0
T ~——
=1 h ..
ypersurface divisors

v

Use the Koszul sequence to compute the cohomology dimensions
hi(S; Og(T)) from the cohomology of X'

= Laborious, but in principle “straightforward”.
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IV. Applications: Finite group actions

In orbifold or orientifold constructions one has a discrete finite symmetry
acting on the space-time and considers the quotient space.

= Consider the invariant part of the cohomology.

Equivariant structure on line bundles

Let G be a finite group acting holomorphically on X. The group
element action g : X — X on the base space may be lifted to the

bundle mapping ¢, : L — L. If I b9 I
Pg © On = dgn ﬂi o iﬂ
this defines an equivariant structure. x2-x

This gives a splitting of the cohomology classes:
H'(X;0x(D)) = Hy (X; Ox(D)) ® Hyoniny(¥; Ox(D)).

[Cvetic-Garcia-Etxebarria-Halyerson '10]
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IV. Applications: Finite group actions

The dimensions of those splittings can be computed by applying the
uplifted G-action on the monomials counted in Np(Q) = Ny © Naon—inv-

Quotient space cohomology

#(suitable G-invariant monomials)

—
II’IV(X OX Z h ND,inV(Q)

hi(X/G; Ox(D)) = h
H,—/ Q

bundle over the quotient space mult|p||C|ty factor

Note that the multiplicity factors b;(Q) remain unchanged!

= Rather simple to compute!
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IV. Applications: Example: @]pz/ ;

Consider the following Z3-action on P?:
< 27i
g1 (21,29, 23) — (a$1,a2$2,$3) fora:=vli=es.

Due to the projective equivalence (x1, 2, x3) ~ (Ax1, Axe, Axrs) between
the homogeneous coordinates z; this base involution is equivalent to
2
g2 (x1, @2, 23) = (T1, e, 0 x3)
2

93 : (1,29, 23) = (a”x1, T2, x3),

The same coordinates form the monomials R used in the algorithm.
= [nvolution mapping can be applied to the monomials.

Choose g; to be the equivariant structure. For fixpoint-free actions
(yielding smooth quotients) all equivariant structures are equivalent.
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IV. Applications: Example: CIP?/

Apply action to monomials that contribute to the cohomology and read off
the corresponding parts by their phases.

Example: Monomials for O(—6) using ¢1, i.e.

1 1 1 1 1
a4u‘11a2u2u;3 T au aguéug ’ au1a2u2u§ ’ a3u?a4u§U3 ’ a3u?au2u§ ’
g1—1 g1—1 g1—1 g1—a g1—a?
1 1 1 1 1
Do PPy Dz B D2 ? Beri2A =2 3 AMOISE BBl By ?
a?uiabulusg auyabuiug a?uia?ugug auyatusug a?ufotuiug
g1 —a? g1—a 91— g1 —a? g1—1

h2(P% O(=6)) = (4inms 30y 302) =  h2(P2/Z3;0(—6)) = 4

Benjamin Jurke (MPI fiir Physik) Computational Tools Boston; Jun 13, 2010 27 /35
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—> Now: Make it simple & easy to use!

Part 5

@ Algorithm implementation cohomCalg
o Outlook



http://wwwth.mppmu.mpg.de/members/blumenha/cohomcalg/

V. Implementation: cohomCalg

cohomCalg

high-speed, cross-platform
C++ implementation cohomCalg

COhom@alg @ Windows / Mac / Linux

fast sheaf cohomology computation

forline bundles on toric varieties @ open source, GLPv3
++Koszul# @ multi-core support

extension

| \

cohomCalg Koszul extension

~ Google for cohomCalg Mathematica interface

@ Hypersurfaces & complete
intersections

@ (co-)tangent bundle, A2T*S

@ Hodge diamond

@ Monads

or try the core algorithm online:

—> cohomcalg.benjaminjurke.net

Benjamin Jurke (MPI fiir Physik) Computational Tools
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V. Implementation: del Pezzo-3 surface

Example: Line bundles on toric variety d

[EN Administrator: Command Prompt

D:\packageshindcohomcaly ——hideinput ——nomonenfile dP3.in

cohonCalg v@.31

. conpiled on May 25 2811 @ 18: x86-64 / 64 bii
© dPlin x author: Benjamin Jurke Cmail@hjurke.
Totmul oxgonatans Thoncton Raha Cehoneton. rahnBgnail.cond
[ 0 . B i 0 . 10 i & Based on the algorithm presented in arXiv:ii@83.5217
1% Tne vertices and GLSM charges:
vertex ul | GLSM: (1, 0, 0, 1) [Reading in the input file *dP3.in’...
3 vertex u2 | GLSM: (1, O, 1, 0 );
4 vertex u3 | GLSM: (1, 1, 0, 0 );
s vercex w4 | GLSM: (0, 0, 0, 1 ): Usage and generation of intermediate monomial files deactivated.
6 vertex us | GL3M: (0, O, 1, 0 ): Starting computation of secondary sequences...
7 vertex u6 | GLSM: (0, 1, 0, 0 );
s Conputation of secondary cohomologies and contributions conplete.
M. e scanley-Reisner ideal: [Conputation of the target cohomology group dimensions complete.
srideal [ul*u2, ul*u3, wuwl*u4, u2*ul, [Cohono logy dimension
uz*us, u3*U6, uL*US, ULTUE, US*UE]: din H~idA; OC -2, B>

<
dim H™idA; 0C -3, -1 = ¢

% And finally the requested line bundle cohomologies:
14 ambientcohom O( -2, 0, -2, 0 );
15 ambientcohom O( -3, 2, -2, -1 );

A1l done. Programm run successfully completed.

The C+ core program takes care of the actual algorithm that computes
line bundles on toric spaces.

Computational Tools Boston; Jun 13, 2010 30 /35
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V. Implementation: Tangent bundle cohomology of hypersurface

Example: The resolved P15

Injie1;= P11222Blowlp = {
«){vl, v2, v3, v4, v5, vi},
v, v2}, {v3, v4, v5, vX}},
" s«){{1, 0}, {1, 0}, {2, 1}, {2, 1}, {2, 1}, {0, 1}}
i
CalabiYauEyperSurface = {{8, 4}}:
CohomologyOf ["TangentBundle", P11222Blowlp, CalabiYauHyperSurface, "Calabi-Yan", "Verbose2"]
.05 [D;]] ol 0s[S:]]
a FES A Rt
OE;“’ ) Eg &g Ts & Tg
Os[1.01%% & 0s[21]1%° & Os[0.1] Os[8.4]
2 2 a2 21 021 104 o]
2 23 A — | f—
0 3 An 3 Az 3 0 86
0 0 Az 2 Az 2 0 2
ol 0 Pon 0 [} 0 0
0 0 0 0 0o 0 o 0
Calculation of Tangent . |WITd
5 ngentBundle cohomology done:
0
Cohom@alg Total number of line bundles: 42 86
K Newly computed: 18 2
Total time needed: 0.593 seconds 0
V.
Benjamin Physik) Computational Tools Boston; Jun 13, 2010
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V. Implementation: Hodge diamond of a CICY 4-fold

e context of F-Theory GUT Va

{vi, v2, v3, v4, v5, v6, vis, v7, v8, v9, vi0},
re) {{v3, ¥9}, {v5, v9}, {v1, vi0}, {vl, v2, v3}, {v4, vis, vB}, {v4, v7, B}, {v4, v&, wi},

{v5, v6, vis}, {v5, v6, v10}, {vl, v2, v6, vis}},

s {{3, 3, 3, 3, 0}, {2, 2, 2, 2, 0}, {1, 0, 0, O, O}, {0, 0,1, 0,0}, {O,0, 0,1, 0},

{0, 1,0, 0,0}, {0, 1,1, 0, 0}, {0, 0, 1, O, 1}, {0, O, 1, 0, 0}, {0, -1, -1, 1, -1}, {0, 0, 0, O, 1}}}:

CompleteIntersection = {{6, 6, 6, 6, 0}, {0, 0, 2, 1, 1}}:

CohomologyQf [ "HodgeDiamond", ExampledFold, CompleteIntersection, "Calabi-Yau"]

1

0

s
Calculation of HodgeDiamond cohomology done:

0

COhomGalg Total number of line bundles: 478 1115 4524 1115 6756 | | ¥ = 6768

Newly computed: 264 0
Total time needed: 31.233 seconds 5

0

1

[Grimm-Krause-Weigand '09]
v

The Mathematica frontend provides convenient functionality, utilizing
the previously discussed methods.

Benjamin Jurke (MPI fiir Physik) Computational Tools Boston; Jun 13, 2010 32 /35


http://benjaminjurke.net

Conclusions

Presented material

@ An easy and efficient way to compute line bundle-valued
cohomology group dimensions of a toric variety.

@ The algorithm implementation cohomcCalg.

@ Methods for the computation of various vector bundles on toric
subspaces with a convenient Mathematica frontend.

@ An extension of the proposed algorithm to compute quotient
space cohomology of a toric variety, i.e. methods to calculate
line bundle cohomology on orbifolds and orientifolds.
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Related work in progress & ideas

@ Exploration of target space duality in (0,2) het. models.

[Blumenhagen-Rahn '11 (upcoming)]

@ Construction and analysis of new Calabi-Yau 3-folds.
[Jurke-Rahn "11 (upcoming)]

Created with
cyexplorer.benjaminjurke.net
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Long term applications

@ Scans over extremely
large string landscape sets and analysis of
various phenomenological properties...

= Cloud computing!

The end

Benjamin Jurke (MPI fiir Physik) Computational Tools Boston; Jun 13, 2010
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Long term applications

@ Scans over extremely
large string landscape sets and analysis of Q
various phenomenological properties...

= Cloud computing!

The end

...well, not quite yet!
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Part 6

@ What is “the Cloud”?

@ How can it be utilized for science?

ystems§ Sté?éi’g’;‘é”
typically | ity also O l H I
_ go puter ¢ §
edlt softwcre iy ‘

i Google . sctur

See et Aéphcct\onser\[lce

Services & = Craracteristis
i lnFrastructure

delivery



VI. Cloud Computing: Performance vs.

Moore’s Law

The Fifth Paradigm Logarithmic Plot
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VI. Cloud Computing: What is “the Cloud “?

PDP-10 = PC = ?

f

i |
@ 1966: PDP-10 — First computer that made time-sharing common!
= Small terminals accessing huge mainframe
@ 1981: IBM PC — First computer for personal / private home use!
= Small independant versatile powerhouses
@ Late 2000s: More and more services remotely accessed.
— A step back?

Benjamin Jurke (MPI fiir Physik) Computational Tools Boston; Jun 13, 2010 3/7
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VI. Cloud Computing: Virtualization

The improvements in computer speed allow to raise the level of
abstraction by a huge margin. Classical approaches like time sharing are
replaced by true virtualization.

Virtualization

A virtual machine simulates all relevant structures of a
computer. From a programmers perspective one effectively
operates on an entirely seperate computer.

= One no longer has to care about the hardware details of
the machine!

v

On modern machines the performance losses of virtualization for most
applications are no longer significant.
= True detachment of hardware and software!
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VI. Cloud Computing: Remote (Super-)Computing — Pros

Using virtualization one can effectively rent .! .
a remote computer and for all practical \/( N &
purposes operate on it similar to a local N ‘O

machine. 0¥ g

@ Maintenance: One big centralized computer cluster is much easier to
maintain than thousands of smaller systems.

@ Load spikes & uptime: Since a virtual machine is not bound to
specific hardware, one can easily move it to a different machine or
(dynamically) associate more hardware to it.

@ Costs: Due to dynamic allocation of resources, the actual hardware is
more efficiently used.
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VI. Cloud Computing: Remote (Super-)Computing — Cons

However, there are also new challenges to be faced:

@ Restrictions: The virtualization may be limited to certain specific
(virtual) operating systems, which makes it challenging (or
impossible) to use existing software.

@ Security: The data is no longer “at home”, privacy questions arise.

\

Do those limitations largely affect scientific computing?
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V1. Cloud Computing: String Vacuum Project
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i CURRENT SVP RESEARCH EFFORTS ARE DIRECTED AT A NUMBER OF FROBLEMS

\w IneLupInG

 CLASSIFICATION OF CALABI-YAU GEONETRIES
* STRING MODEL-BUILDING
* MODULI STABILIZATION AND SUPERSYNMETRY BREAKING

* EXOTIC PARTICLES AND EXTENSIONS OF THE SM GAUGE GROUP
* GEOMETRICAL ANALYSIS OF SUPERSYMMETRIC FIELD THEORIES

NSF grant to B. Nelson, J. Gray, Y.-H. He and V. Jejjala to utilize the
Microsoft Azure cloud platform for computational problems relevant for
string theory.
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