Computational Tools for String Phenomenology OR: The importance of cohomology group dimensions

Benjamin Jurke

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Contents

- String pheno & cohomology
- Toric geometry 1-0-1
- Algorithm & Applications
- cohomCalg implementation

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶ ◆□▶

Boston (Northeastern University) — June 13, 2011

with R. Blumenhagen, T. Rahn, H. Roschy

- Algorithm: arXiv:1003.5217
- Proofs: arXiv:1006.2392 & S.-T. Jow: arXiv:1006.0780
- Applications: arXiv:1010.3717

Part 1

• Motivation:

String phenomenology & cohomology groups

I. Motivation: Type II string models

In Type II string models **intersecting D-branes** and **gauge fluxes** are required in order to generate chiral matter.

Example: U(1) gauge flux on D7s

 D_a , D_b two stacks of D7s intersecting over curve $C = D_a \cap D_b$, matter in the bifundamental (\bar{N}_a, N_b) is counted by

 $H^i(\mathbb{C}; L_a^{\vee} \otimes L_b \otimes K_{\mathbb{C}}^{\frac{1}{2}}).$

The chiral index gives the net number of chiral states:

$$\begin{split} I_{ab}^{\text{loc}} &= \chi(\boldsymbol{C}; L_a^{\vee} \otimes L_b \otimes \boldsymbol{K}_{\boldsymbol{C}}^{\frac{1}{2}}) \\ &\stackrel{\mathsf{RRH}}{=} - \int_{\mathcal{X}} \left[D_a \right] \wedge \left[D_b \right] \wedge \left(c_1(L_a) - c_1(L_b) \right) \end{split}$$

[Blumenhagen-Körs-Lüst-Stieberger '06, Blumenhagen-Braun-Grimm-Weigand '08]

1213

ヘロト ヘボト ヘヨト

I. Motivation: D-brane instanton counting

Euclidean D-brane instantons (E-branes) are **entirely wrapped around the compactified dimensions**, i.e. pointlike from the 4d perspective.

Example: Zero modes counting for E3-brane instanton

I. Motivation: E3/M5-instanton matching

Type IIB E3-brane instanton zero modes can be matched to vertical **M5-brane instantons in F-theory**.

Benjamin Jurke (MPI für Physik)

I. Motivation: Heterotic string models

In heterotic string modes on the Calabi-Yau 3-fold \mathcal{X} a (stable, holomorphic) vector bundle breaks the gauge group $E_8 \times E_8$ or SO(32).

Example: SU(5) model in heterotic string theory

Let $\mathcal{X} = \mathbb{P}^4[5]$ be the quintic Calabi-Yau 3-fold. The monad

$$0 \longrightarrow \mathbf{V} \hookrightarrow \mathcal{O}_{\mathcal{X}}(2)^{\oplus 5} \oplus \mathcal{O}_{\mathcal{X}}(1)^{\oplus 5} \longrightarrow \mathcal{O}_{\mathcal{X}}(3)^{\oplus 5} \longrightarrow 0$$

describes an SU(5)-bundle, yielding a SU(5) GUT of the $E_8 \times E_8$ heterotic string (after modding out $\mathbb{Z}_5 \times \mathbb{Z}_5$). The **particle spectrum** is given by:

$$\eta_{10} = h^{1}(\mathcal{X}; \mathbf{V}) \qquad \eta_{5} = h^{1}(\mathcal{X}; \Lambda^{2}\mathbf{V})$$

$$\underbrace{\eta_{\overline{10}} = h^{1}(\mathcal{X}; \mathbf{V}^{*})}_{Q \oplus U \oplus E} \qquad \underbrace{\eta_{\overline{5}} = h^{1}(\mathcal{X}; \Lambda^{2}\mathbf{V}^{*})}_{D \oplus L}$$
[Anderson-Gray-He-Lukas '09]
[Anderson-Gray-He-Lukas '00]
[Anderson-Gray-He-Lukas '00]
[Anderson-Gray-He-Lukas '

I. Motivation: Why line bundle cohomology?

In all mentioned examples the phenomenological aspects are ultimately determined by the dimension of vector-bundle-valued cohomology groups.

In fact: Most vector bundles are constructed as monads from line bundles

$$0 \longrightarrow V \hookrightarrow \bigoplus_{j} \mathcal{O}_{\mathcal{X}}(b_{j}) \longrightarrow \bigoplus_{k} \mathcal{O}_{\mathcal{X}}(c_{k}) \longrightarrow 0$$

Examples of monads

• The tangent bundle $T_{\mathcal{X}}$ of toric varieties is a monad.

• The vector bundle moduli can be computed from $End(V) \cong V \otimes V^*$.

Important tool: **Exactness of sequences**, i.e. $image(f_i) = kernel(f_{i+1})$.

If a sequence is exact, the location of dimension-0 spaces often suffices to determine isomorphisms, which makes computations a lot easier.

Benjamin Jurke (MPI für Physik)

EL OQO

7 / 35

From short exact sequences of sums of line bundles one considers the **induced long exact sequences** of the cohomology, e.g.:

$$0 \longrightarrow \mathcal{O}_{\mathcal{X}}^{\oplus r} \hookrightarrow \bigoplus_{k} \mathcal{O}_{\mathcal{X}}(D_{k}) \longrightarrow T_{\mathcal{X}} \longrightarrow 0$$

$$\downarrow$$

$$0 \longrightarrow H^{0}(\mathcal{X}; \mathcal{O}_{\mathcal{X}})^{\oplus r} \longrightarrow \bigoplus_{k} H^{0}(\mathcal{X}; \mathcal{O}_{\mathcal{X}}(D_{k})) \longrightarrow H^{0}(\mathcal{X}; T_{\mathcal{X}})$$

$$\longrightarrow H^{1}(\mathcal{X}; \mathcal{O}_{\mathcal{X}})^{\oplus r} \longrightarrow \bigoplus_{k} H^{1}(\mathcal{X}; \mathcal{O}_{\mathcal{X}}(D_{k})) \longrightarrow H^{1}(\mathcal{X}; T_{\mathcal{X}})$$

$$\longrightarrow H^{2}(\mathcal{X}; \mathcal{O}_{\mathcal{X}})^{\oplus r} \longrightarrow \bigoplus_{k} H^{2}(\mathcal{X}; \mathcal{O}_{\mathcal{X}}(D_{k})) \longrightarrow H^{2}(\mathcal{X}; T_{\mathcal{X}}) \longrightarrow \dots$$

From a phenomenologists point of view, everything boils down to the computation of line bundle-valued cohomology group dimension $h^i(\mathcal{X}; L_{\mathcal{X}})$. What to do?

Known methods

- **Isomorphisms**: If you can find isomorphisms to spaces with known cohomology, you don't have to compute anything.
- **Spectral sequences**: The method of spectral sequences allows to compute the cohomology of general spaces, but it is extremely laborious to work with.
- → Find a new method to compute line bundle cohomology!

Part 2

• Basics of toric geometry

My kind of Toric Variety."

Reminder: Complex projective space

 \mathbb{P}^n is constructed as a quotient space. The coordinates x_0, \ldots, x_n of \mathbb{C}^{n+1} are subject to the \mathbb{C}^{\times} -action

$$(x_0,\ldots,x_n)\mapsto (\lambda x_0,\ldots,\lambda x_n)$$
 for all $\lambda\in\mathbb{C}^{\times}$,

if the origin $0 \in \mathbb{C}^{n+1}$ is removed, thus $\mathbb{P}^n = \frac{\mathbb{C}^{n+1} - \{0\}}{\mathbb{C}^{\times}}.$

Weighted projective space

Generalize the \mathbb{C}^{\times} -action by changing the powers of λ :

$$(x_0,\ldots,x_n)\mapsto (\lambda^{Q_0}x_0,\ldots,\lambda^{Q_n}x_n)$$
 for all $\lambda\in\mathbb{C}^{\times}$,

giving $\mathbb{P}^n_{Q_0,\ldots,Q_n}$. Note that $\mathbb{P}^n = \mathbb{P}^n_{1,\ldots,1}$.

Benjamin Jurke (MPI für Physik)

Toric variety

Use several $\mathbb{C}^\times\text{-actions}$ with different weights. The powers are given by charges Q^a_k such that

$$(x_0,\ldots,x_n)\mapsto \left((\lambda_1^{Q_0^1}\cdots\lambda_r^{Q_0^r})x_0,\ldots,(\lambda_1^{Q_n^1}\cdots\lambda_r^{Q_n^r})x_n
ight) \quad \text{for } \lambda_i\in\mathbb{C}^{\times},$$

defines a $(C^{\times})^r$ -action. Instead of just the origin, a set Z has to be removed from \mathbb{C}^{n+r} . The **toric variety** is then

$$\mathcal{X} = \frac{\mathbb{C}^{n+r} - Z}{(\mathbb{C}^{\times})^r}$$

There is an alternative, entirely combinatorial perspective on toric varieties that makes this kind of geometry ideally suited for algorithmic treatments.

ELE DOG

Stanley-Reisner ideal

The Stanley-Reisner ideal encodes sets of coordinates x_i that are **NOT** allowed to vanish simultaneously. It can be generated by squarefree monomials S_i , which are the products of those coordinates:

$$SR(\mathcal{X}) = \left\{ x_{k_1} \cdots x_{k_p} : \{ x_{k_1}, \dots, x_{k_p} \} \in Z \right\}$$
$$= \langle \mathcal{S}_1, \dots, \mathcal{S}_t \rangle$$

Example: $SR(\mathbb{P}^2) = \langle x_0 x_1 x_2 \rangle$ encondes the removed origin.

Divisors on toric varieties

A divisor on a toric variety is basically a formal sum of codimension-1 hypersurfaces. With respect to the chosen coordinates x_0, \ldots, x_n of \mathcal{X} , one frequently uses the divisors $D_i := \{x_i = 0\} \subset \mathcal{X}$.

Benjamin Jurke (MPI für Physik)

II. Toric Geometry 1-0-1: Line bundles

From the projective powers Q_k^a of a toric variety (called GLSM charges in a different context) one can directly read off the classes of the divisors D_i .

Example: $\mathbb{P}^2 = \mathbb{P}^2_{1,1}$ has just one projective	coords	pov	vers	divisor
relation and each power is $Q_k^1 = 1$. Thus		Q^1	Q^2	class
$[D_1] = [D_2] = [D_3] = H.$	x_1	1	0	Н
	x_2	1	0	H
Example: The del Pezzo-1 surface (single	x_3	1	1	H + X
blowup of 1) has two projective relations.	x_4	0	1	X

Divisors & line bundles

Line bundles $\mathcal{O}(D)$ and divisor D are in a direct correspondence:

divisor classes \cong line bundle classes

What now?

Part 3

• An **algorithm** to compute line bundle-valued cohomology group dimensions

Remember: Ultimately, we are interested in computing dim $H^i(\mathcal{X}; \mathcal{O}_{\mathcal{X}}(D))$.

[2×Blumenhagen-Jurke-Rahn-Roschy '10, Rahn-Roschy '10, Jow '10]

Input data: toric variety X

• homogeneous coordinates $H = \{x_1, \dots, x_n\}$

• associated GLSM charges Q_i^a for each x_i

• Stanley-Reisner ideal $SR = \langle S_1, \dots, S_N \rangle$

Basic idea of the algorithm

Count monomials of a specific form which carry the same GLSM charge as the divisor D specifying the line bundle $\mathcal{O}_{\mathcal{X}}(D)$.

But: One also has to determine to which cohomology group dimension $h^i(X; \mathcal{O}_{\mathcal{X}}(D))$ (i.e. to which degree *i*) this counting contributes.

Take a squarefree monomial $Q = x_{i_1} \cdots x_{i_k}$ of the coordinates H.

Consider monomials of the form

- Coordinates in ${\mathcal Q}$ have negative powers ≤ -1
- Remaining coordinates in $H \setminus \mathcal{Q}$ have positive powers ≥ 0

B A E A E E OQO

Step 1: Count number of monomials with degree of D

$$\mathcal{N}_D(\mathcal{Q}) := \dim \left\{ R^{\mathcal{Q}} : \deg_{\mathrm{GLSM}} R^{\mathcal{Q}} = D \right\}$$

 $\mathcal{Q} = \begin{cases} \text{squarefree monomial} \\ \text{from the union of} \\ \text{the coordinates in} \\ \text{SR ideal generators} \end{cases}$

Determine to which cohomology group dimension $h^i(X; \mathcal{O}_X(D))$ the number $\mathcal{N}_D(\mathcal{Q})$ contributes.

→ Trace back how often the same Q arises.

For each Q build up an abstract simplex $\Gamma^{Q} := \{S \subset SR : Q(S) = Q\}$ with k-faces

$$F_k(\Gamma^{\mathcal{Q}}) := \left\{ S \in \Gamma^{\mathcal{Q}} : |S| = k+1 \right\}.$$

▲ ∃ ► ■ |= √Q ∩

III. Algorithm: Description

$$\begin{array}{ccc} \phi_k: F_k(\Gamma^{\mathcal{Q}}) \longrightarrow F_{k-1}(\Gamma^{\mathcal{Q}}) \\ e_\rho \mapsto \sum_{s \in \rho} \operatorname{sign}(s, \rho) e_{\rho - \{s\}} \end{array} & & & & & & \\ & & & & \\ \end{array} \overset{\mathrm{d}}{\underset{\mathrm{a}}{\overset{\mathrm{d}}{\Longrightarrow}}} = & & & & \\ & & & & \\ \overset{\mathrm{d}}{\underset{\mathrm{a}}{\boxtimes}} = & & & & \\ & & & & \\ \end{array} \overset{\mathrm{d}}{\underset{\mathrm{a}}{\boxtimes}} = & & & & \\ & & & & \\ \end{array} \overset{\mathrm{d}}{\underset{\mathrm{a}}{\boxtimes}} = & & & & \\ & & & & \\ \end{array} \overset{\mathrm{d}}{\underset{\mathrm{a}}{\boxtimes}} = & & & \\ & & & & \\ \end{array} \overset{\mathrm{d}}{\underset{\mathrm{a}}{\boxtimes}} = & & & \\ & & & \\ \end{array} \overset{\mathrm{d}}{\underset{\mathrm{a}}{\boxtimes}} = & & & \\ & & & \\ \end{array} \overset{\mathrm{d}}{\underset{\mathrm{a}}{\boxtimes}} = & & & \\ & & & \\ \end{array} \overset{\mathrm{d}}{\underset{\mathrm{a}}{\boxtimes}} = & & & \\ & & & \\ \end{array} \overset{\mathrm{d}}{\underset{\mathrm{a}}{\boxtimes}} = & & & \\ & & & \\ \end{array} \overset{\mathrm{d}}{\underset{\mathrm{a}}{\boxtimes}} = & & & \\ & & & \\ \end{array} \overset{\mathrm{d}}{\underset{\mathrm{a}}{\boxtimes}} = & & & \\ & & & \\ \end{array} \overset{\mathrm{d}}{\underset{\mathrm{a}}{\boxtimes}} = & & & \\ & & & \\ \end{array} \overset{\mathrm{d}}{\underset{\mathrm{a}}{\boxtimes}} = & & \\ & & & \\ \end{array} \overset{\mathrm{d}}{\underset{\mathrm{a}}{\boxtimes}} = & & \\ & & & \\ \end{array} \overset{\mathrm{d}}{\underset{\mathrm{a}}{\boxtimes}} = & & \\ & & & \\ \end{array} \overset{\mathrm{d}}{\underset{\mathrm{a}}{\boxtimes}} = & & \\ & & & \\ \end{array} \overset{\mathrm{d}}{\underset{\mathrm{a}}{\boxtimes}} = & \\ & & \\ \end{array} \overset{\mathrm{d}}{\underset{\mathrm{a}}{\boxtimes}} = & \\ \end{array} \overset{\mathrm{d}}{\underset{\mathrm{a}}{\boxtimes}} = & \\ \end{array} \overset{\mathrm{d}}{\underset{\mathrm{d}}{\boxtimes}} = & \\ \end{array} \overset{\mathrm{d}}{\underset{\mathrm{d}}{\boxtimes}} = & \\ \end{array} \overset{\mathrm{d}}{\underset{\mathrm{d}}{\boxtimes}} \overset{\mathrm{d}}{\underset{\mathrm{d}}{\boxtimes}} = & \\ \end{array} \overset{\mathrm{d}}{\underset{\mathrm{d}}{\boxtimes}} \overset{\mathrm{d}}{\underset{\mathrm{d}}{\boxtimes}} = & \\ \end{array} \overset{\mathrm{d}}{\underset{\mathrm{d}}{\boxtimes}} = & \\ \end{array} \overset{\mathrm{d}}{\underset{\mathrm{d}}{\underset{\mathrm{d}}{\boxtimes}} = & \\ \end{array} \overset{\mathrm{d}}{\underset{\mathrm{d}}{\underset{\mathrm{d}}{\boxtimes}} = & \\ \end{array} \overset{\mathrm{d}}{\underset{\mathrm{d}}{\underset{\mathrm{d}}{\underset{\mathrm{d}}{\boxtimes}} = & \\ \end{array} \overset{\mathrm{d}}{\underset{\mathrm{d}}}{\underset{\mathrm{d}}{\underset{\mathrm{d}}{\underset{\mathrm{d}}}{\underset{\mathrm{d}}{\underset{\mathrm{d}}}{\underset{\mathrm{d}}{\underset{\mathrm{d}}{\underset{\mathrm{d}}}{\underset{\mathrm{d}}{\underset{\mathrm{d}}{\underset{\mathrm$$

defines the boundary mappings, where $e_{\rho-\{s\}} = 0$ if $e_{\rho-\{s\}} \notin \Gamma^{\mathcal{Q}}$.

Step 2: Multiplicity factor and group contribution

Consider the (reduced) homology $\tilde{H}_{\bullet}(\Gamma^{\mathcal{Q}})$ and define the multiplicity factors

$$\mathfrak{h}_i(\mathcal{Q}) := \dim \tilde{H}_{|\mathcal{Q}|-i-1}(\Gamma^{\mathcal{Q}})$$

Those multiplicity factors are 0 or 1 in most cases—but not always.

"Dirty trick": Via exactness it often suffices to determine just dim $F_k(\Gamma^{\mathcal{Q}})$.

Dimension of line bundle sheaf cohomology

$$\dim H^i(X; \mathcal{O}_X(D)) = \sum_{\mathcal{Q}} \underbrace{\mathfrak{h}_i(\mathcal{Q})}_{\text{multiplicity factor}} \cdot \underbrace{\mathcal{N}_D(\mathcal{Q})}_{\text{free monomials from unions of SR generators}}^{\#(\text{suitable monomials } R^{\mathcal{Q}})}$$

- Determine all monomials Q from unions of SR gens.
- For each such Q compute the corresponding numbers of SR gen. combinations F_k(Γ^Q)
- From those determine the multiplicity factors h_i(Q)

- For each Q where h_i(Q) ≠ 0 count the number of rational functions N_D(Q).
- Sum over all relevant contributions h_i(Q) · N_D(Q).
 - → completely algorithmic

ELE DOG

Part 4

• Applications

- Cohomology of subvarieties
- Tangent bundle of complete intersections
- Finite group actions (orbifolds & orientifolds)

[Blumenhagen-Jurke-Rahn-Roschy '10]

315

(日) (日) (日) (日) (日)

IV. Applications: Hypersurfaces & the Koszul sequence

From the cohomology of a toric ambient space one can descent to the cohomology of a hypersurface, e.g. a Calabi-Yau hypersurface like $\mathbb{P}^4[5]$.

The Koszul sequence

Let S be a hypersurface (i.e. divisor) in a toric variety X and T be an arbitrary second divisor of X.

$$0 \longrightarrow \underbrace{\mathcal{O}_X(T-S) \hookrightarrow \mathcal{O}_X(T)}_{\text{line bundles on}} \xrightarrow{\longrightarrow} \underbrace{\mathcal{O}_S(T)}_{\text{hypersurface } S \subset X} \longrightarrow 0.$$

→ Compute $H^i(S; \mathcal{O}_S(T))$ via induced long exact cohomology sequence.

The complete intersection $S = S_1 \cap \cdots \cap S_t$ of several hypersurfaces $S_i \subset X$ can be handled by iteration.

1 = 1 = 1 = 1 Q ()

IV. Applications: Tangent bundle of hypersurfaces

On a complete intersection $S = S_1 \cap \cdots \cap S_t$ the tangent bundle T_S can be described via two short exact sequences:

Use the Koszul sequence to compute the cohomology dimensions $h^i(S; \mathcal{O}_S(T))$ from the cohomology of \mathcal{X} .

→ Laborious, but in principle "straightforward".

ヨト イヨト ヨヨ のくや

IV. Applications: Finite group actions

In orbifold or orientifold constructions one has a discrete finite symmetry acting on the space-time and considers the quotient space.

→ Consider the invariant part of the cohomology.

Equivariant structure on line bundles

Let G be a finite group acting holomorphically on X. The group element action $g: X \longrightarrow X$ on the base space may be lifted to the bundle mapping $\phi_g: L \longrightarrow L$. If

$$\phi_g \circ \phi_h = \phi_{gh}$$

 $\begin{array}{c|c} L - \stackrel{\phi_g}{-} \succ L \\ \pi & & \downarrow \\ \pi & & \downarrow \\ X \stackrel{g}{\longrightarrow} X \end{array}$

this defines an equivariant structure.

This gives a splitting of the cohomology classes:

 $H^{i}(\mathcal{X}; \mathcal{O}_{\mathcal{X}}(D)) = H^{i}_{\mathrm{inv}}(\mathcal{X}; \mathcal{O}_{\mathcal{X}}(D)) \oplus H^{i}_{\mathrm{non-inv}}(\mathcal{X}; \mathcal{O}_{\mathcal{X}}(D)).$

The dimensions of those splittings can be computed by applying the uplifted G-action on the monomials counted in $\mathcal{N}_D(\mathcal{Q}) = \mathcal{N}_{inv} \oplus \mathcal{N}_{non-inv}$.

Quotient space cohomology

$$\#(\text{suitable } G\text{-invariant monomials})$$

$$h^{i}(\mathcal{X}/G; \underbrace{\mathcal{O}_{\mathcal{X}}(D)}) = h^{i}_{\text{inv}}(\mathcal{X}; \mathcal{O}_{\mathcal{X}}(D)) = \sum_{\mathcal{Q}} \underbrace{\mathfrak{h}_{i}(\mathcal{Q})}_{\text{multiplicity factor}} \cdot \underbrace{\mathcal{N}_{D, \text{inv}}(\mathcal{Q})}_{\text{multiplicity factor}}$$

Note that the multiplicity factors $\mathfrak{h}_i(\mathcal{Q})$ remain unchanged!

→ Rather simple to compute!

Consider the following \mathbb{Z}_3 -action on \mathbb{P}^2 :

$$g_1: (x_1, x_2, x_3) \mapsto (\alpha x_1, \alpha^2 x_2, x_3)$$
 for $\alpha := \sqrt[3]{1} = e^{\frac{2\pi i}{3}}$.

Due to the projective equivalence $(x_1, x_2, x_3) \sim (\lambda x_1, \lambda x_2, \lambda x_3)$ between the homogeneous coordinates x_i this base involution is equivalent to

$$g_2 : (x_1, x_2, x_3) \mapsto (x_1, \alpha x_2, \alpha^2 x_3)$$

$$g_3 : (x_1, x_2, x_3) \mapsto (\alpha^2 x_1, x_2, \alpha x_3),$$

The same coordinates form the monomials R^{Q} used in the algorithm. \rightarrow Involution mapping can be applied to the monomials.

Choose g_1 to be the equivariant structure. For fixpoint-free actions (yielding smooth quotients) all equivariant structures are equivalent.

IV. Applications: Example: $\mathbb{CP}^2/\mathbb{Z}_3$

Apply action to monomials that contribute to the cohomology and read off the corresponding parts by their phases.

Result:

$$h^{2}(\mathbb{P}^{2}; \mathcal{O}(-6)) = (4_{\text{inv}}, 3_{\alpha}, 3_{\alpha^{2}}) \rightarrow h^{2}(\mathbb{P}^{2}/\mathbb{Z}_{3}; \mathcal{O}(-6)) = 4$$

Benjamin Jurke (MPI für Physik)

→ Now: Make it simple & easy to use!

Part 5

- Algorithm implementation cohomCalg
- Outlook

V. Implementation: cohomCalg

 \rightarrow Google for cohomCalg

or try the core algorithm online:

cohomcalg.benjaminjurke.net

cohomCalg

high-speed, cross-platform C++ implementation **cohomCalg**

- Windows / Mac / Linux
- open source, GLPv3
- multi-core support

cohomCalg Koszul extension

Mathematica interface

- Hypersurfaces & complete intersections
- (co-)tangent bundle, $\Lambda^2 T^*S$
- Hodge diamond
- Monads

ELE DOG

Example: Line bundles on toric variety dP_3

● dP3.in ×	
0,,1,0,,2,0,,3,0,,4,0,,5,0,	
1 % The vertices and GLSM charges:	
<pre>2 vertex u1 GLSM: (1, 0, 0, 1);</pre>	
3 vertex u2 GLSM: (1, 0, 1, 0);	
4 vertex u3 GLSM: (1, 1, 0, 0);	
5 vertex u4 GLSM: (0, 0, 0, 1);	
6 vertex u5 GLSM: (0, 0, 1, 0);	
7 vertex u6 GLSM: (0, 1, 0, 0);	
8	
9 % The Stanley-Reisner ideal:	
10 srideal [u1*u2, u1*u3, u1*u4, u2*u3,	
11 u2*u5, u3*u6, u4*u5, u4*u6, u5*u6];	
12	
13 % And finally the requested line bundle cohomologies:	
14 ambientcohom O(-2, 0, -2, 0);	
15 ambientcohom O(-3, 2, -2, -1);	

The **C**++ **core program** takes care of the actual algorithm that computes line bundles on toric spaces.

Benjamin Jurke (MPI für Physik)

イロト イポト イヨト イヨト

ELE DQA

V. Implementation: Tangent bundle cohomology of hypersurface

Benjamin Jurke (MPI für Physik)

Computational Tools

Boston; Jun 13, 2010 31 / 35

V. Implementation: Hodge diamond of a CICY 4-fold

CICY 4-fold in the context of F-Theory GUT Vacua

In[53]:= Example4Fold = {

CohomologyOf["HodgeDiamond", Example4Fold, CompleteIntersection, "Calabi-Yau"]

The **Mathematica frontend** provides convenient functionality, utilizing the previously discussed methods.

Benjamin Jurke (MPI für Physik)

Computational Tools

Boston; Jun 13, 2010 32 / 35

Presented material

- An easy and efficient way to compute line bundle-valued cohomology group dimensions of a toric variety.
- The algorithm implementation cohomCalg.
- Methods for the computation of various vector bundles on toric subspaces with a convenient Mathematica frontend.
- An extension of the proposed algorithm to compute quotient space cohomology of a toric variety, i.e. methods to calculate line bundle cohomology on orbifolds and orientifolds.

Outlook

- Exploration of target space duality in (0,2) het. models. [Blumenhagen-Rahn '11 (upcoming)]
- Construction and analysis of new Calabi-Yau 3-folds. [Jurke-Rahn '11 (upcoming)]

Benjamin Jurke (MPI für Physik)

Long term applications

 Scans over extremely large string landscape sets and analysis of various phenomenological properties...

→ Cloud computing!

The end

-

Long term applications

 Scans over extremely large string landscape sets and analysis of various phenomenological properties...

→ Cloud computing!

The end

...well, not quite yet!

Part 6

- What is "the Cloud"?
- How can it be utilized for science?

VI. Cloud Computing: Performance vs. Costs

→ Over time: "More bang for the buck!"

Benjamin Jurke (MPI für Physik)

Computational Tools

三日 のへの

PDP-10 → PC → ?

- 1966: PDP-10 First computer that made time-sharing common!
 → Small terminals accessing huge mainframe
- 1981: IBM PC First computer for personal / private home use!
 → Small independant versatile powerhouses
- Late 2000s: More and more services remotely accessed.
 - → A step back?

The improvements in computer speed allow to raise the level of abstraction by a huge margin. Classical approaches like time sharing are replaced by true virtualization.

Virtualization

A virtual machine simulates all relevant structures of a computer. From a programmers perspective one effectively operates on an entirely seperate computer.

→ One no longer has to care about the hardware details of the machine!

On modern machines the performance losses of virtualization for most applications are no longer significant.

→ True detachment of hardware and software!

Using virtualization one can effectively rent a remote computer and for all practical purposes operate on it similar to a local machine.

- Maintenance: One big centralized computer cluster is much easier to maintain than thousands of smaller systems.
- Load spikes & uptime: Since a virtual machine is not bound to specific hardware, one can easily move it to a different machine or (dynamically) associate more hardware to it.
- Costs: Due to dynamic allocation of resources, the actual hardware is more efficiently used.

However, there are also new challenges to be faced:

- Restrictions: The virtualization may be limited to certain specific (virtual) operating systems, which makes it challenging (or impossible) to use existing software.
- Security: The data is no longer "at home", privacy questions arise.

ł

Do those limitations largely affect scientific computing?

VI. Cloud Computing: String Vacuum Project

NSF grant to B. Nelson, J. Gray, Y.-H. He and V. Jejjala to utilize the Microsoft Azure cloud platform for computational problems relevant for string theory.