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1. Motivation: Bundle constructions

In the context of toric geometry line bundles are appearing all over:
® Description of the tangent bundle:
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1. Motivation: Line bundles and Cohomology

From short exact sequences of sums of line bundles one considers the
induced long exact sequences of the cohomology, e.g.:
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1. Motivation: Why line bundle cohomology?

General idea: Avoid evaluating the actual mappings in sequences
and try to eliminate/relate as much as possible by exactness
considerations.

In the shown examples everything boils down to the computation of
line bundle-valued cohomology group dimension h*(X’; Ly).
Known methods:

® Isomorphisms: If you can find isomorphisms to spaces with known
cohomology, you don't have to compute anything.
m Spectral sequences: The method of spectral sequences allows to

compute the cohomology of general spaces, but it is extremely
laborious to work with.

= Find an algorithmic method to compute line bundle cohomology!
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Central idea: Take the Stanley-Reisner ideal Iy, of a toric variety Ax;
into account.

2. Algorithm: Overview / General Structure

Resulting formula:

elements in “neg-group”

hi(X; Ox(a)) = Z [(a,0)] * Bio|—i,5(S/Ix)
oCln] —

< multiplicity factor
5,6€P(Is) prety

m Multiplicity factors only depend on geometry of the variety X5,
not on the bundle Oy () — compute once for all bundles!
® Bundle-specific part is essentially counting the number of integer

solutions for a linear system.
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2. Algorithm: Preliminaries

Setting:

B X smooth toric variety

® Y toric fan on the vertex set V = [n] := {1,...,n}

B xi,...,%, homogeneous coordinates associated to the vertices
m S:=Clx1,...,z,] Cox ring of homogeneous coordinates
Define 6 := [n] \ o to be the complement to any o C [n].

Two important ideals in the Cox ring:

m Stanley-Reisner ideal: Iy := (7 : 6 € ¥)
(generated by products of the coordinates that are
not allowed to vanish simultaneously)

® |rrelevant ideal: By := (27 : 0 ¢ %)

Note: Is. and By are Alexander-dual to each other.
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2. Algorithm: LOocal cohomology

On a smooth variety Weil divisors are also Cartier and the class group
Cl(X) := Div(X)/ Divg(X) is equivalent to the Picard group:

CI(X) = Pic(x) = 7"
The Cox ring can then be decomposed by a Cl(&X')-grading:

S=@PS. where S, =T(X;0x())
aeCl(X)

Relationship between line bundle-valued cohomology and local
cohomology:

H'(X;0x(0) 2 HG ' (S)o  for a € CI(X), i > 1.
N—_——

localized on irrelevant ideal [Eisenbud-Mustats-Stillman 0]
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2. Aigorithm: Grading refinement

Each coordinate x; carries projective weights le), ceey anid).
Associate a basis vector ¢; € Z™ and define a map

coordinate divisor

f:7Z" — ClI(X) =z
where D;:={z; =0} C X

& D] =@QW,...,Q" ),

Use this map to refine the grading on the localized cohomology:

HY(X;0x(0)) =@ HG(S)z  forae CLX), i>1.
UEL™:

f(@)=a

However, there is a huge redundancy between the Z™-graded local
cohomology groups.
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2. Aigorithm: Grading redundancy

However, there is a huge redundancy between the Z™-graded local
cohomology groups. Define

(component indices where
U has a negative value)

neg(d) := {k € [n] : ux, <0}
It follows that
Hp (S)g = Hp (S)y <= neg(ii) = neg(?)
[Jow "10]

When this Z"-grading is translated back to monomials, the only
distinguishig factor is therefore which coordinates can appear with
negative powers.

§=Clar, ]~ S[da] = Clon,. . 2n, o

mueg(ﬁ) W
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2. Aigorithm: Grouped dimension formula

If one is only interested in the dimension of the cohomology group,
this allows for big simplification:

elements in neg group”

h(X;0x () Zyaa |- hiE1(S)s

Cln M
oCln] multiplicity factors

where (a,0):={ueZ": f(i) = a, neg(t) = o}.
Notes:
® The sum reduces to 2" terms.

® The multiplicity factors can be expressed as the graded Betti
number of a free resolution of the Stanley-Reisner ring S/ Ix:

W31 (S)e = Bo|—i,5(5/1Ix)
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2. Aigorithm: Stanley-Reisner ideal reductions

Let Iy, = (S1,...,S:) be the Stanley-Reisner ideal with ¢ squarefree
monomial generators in z1,...,%,. For any subset 7 C [¢] define

union of @-coordinates
@r = deg, (lemg{S;:i e 7}) € Z"
P(Iy) :={d,: 7 C [t]}

(d- corresponds to the union of the x;-coordinates in the generators S-, ..., STW
in terms of the Z"-grading, P(Ix) is the set of all such unions.)

For o C [n] define 7 :=[],., z; and & := deg,(x7) € Z".

(d- and & are vectors of Os and 1s in Z" indicating if the z; is in the monomial)
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2. Aigorithm: Stanley-Reisner ideal reductions

Main vanishing theorem: Only unions of coordinates in the
Stanley-Reisner ideal generators contribute to the dimension:

W51 (S)e = Brs(S/Ix) =0 forall o C [n] where & & P(Iy).

The same result holds for the complement &, leading to

elements in “neg-group”

/—Aﬁ
ht (X OX Z| «, 0 ‘ 5|J| ZO’(S/IE)
oCln]

< multiplicity factor
5,6€P(Ix) pherty
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2. Aigorithm: Computing multiplicity factors

Let o C [n] and define an abstract simplicial subcomplex of the full
complex Ay on the Stanley-Reisner ideal generator by

[7:={r C[t]: @ = 7} - AW@ V

The complex mappings are the usual “ordered alternating sum of
faces”-type of standard simplicial complexes.

Main computational result: The multiplicity factors can be
computed from the reduced cohomology of I'?:

5735(5/[2) = dim(c ﬁr_l(l““)
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3. Implementation: Computational complexity

In practice one can determine the simplicial complexes I'? to compute
the multiplicity factors and the "selection principle” of 5,6 € P(Ix)
in one step by working through the powerset of Stanley-Reisner ideal
generators.

The exponential growth 2" with the number of vertizes is replaces by
an exponential growth 2! with the number of Stanley-Reisner ideal
generators.

Bottom line: Algorithm very efficient for ¢ small!
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3. Implementation: cohomCalg

/>

C

fast

>homGalg

sheaf ce i

extension *\

- Google for cohomCalg

The core algorithm can be tried

online.
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cohomCalg

high-speed, cross-platform
C++ implementation cohomCalg

® Windows / Mac / Linux
B open source, GLPv3
B multi-core support

cohomCalg Koszul extension

Mathematica interface

B Hypersurfaces & complete
intersections

® (co-)tangent bundle, A®T*S

® Hodge diamond

® Monads
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3. Implementation: cohomCalg

Example: Line bundles on toric variety dPs

© dP3in x

30, 40, 50,

¥i
Vi
)
)i
)

O, 0y 20

1% The vertices and GLSM charges:

z vertex ul | GLSM: ( 1,

3 wvertex u2 | GLSM: ( 1,

4 wvertex u3 | GLSM: ( 1,

5 vervex u4 | GLSM: ( O,
vervex us | GLSM: ( O,

7 vertex ué | GLSM: ( O,

5 % The Stanley-Reisner ideal:

ul~u3,
us*ué,

srideal [ul®uZ,
u2*us,

% Znd finally the requested
ambientcohom O -2, @,
ambientconom O( -3, 2,

o
o
coroor

)i

ul~u4,
u4*us,

uz*u3,

ud*ué, usS*ué]:

line bundle cohomologies:

-2, 0);
-2, -1 ):

B Administrator: Command Prompt

p: \packagebin>cohomcaly —-hideinput --nononomfile dP3.in

Evhvmcals v8.3L

Cex on May 25 2611 G 19:4:
B=naan1n Jurke ¢nailBhjurke.net
extension: Thorsten Rahn (thorsten.rahnBgmail.con)

Baced on the algorichm presented in arfiiv:1003.8217

[Reading in the input File dP3.in’._.

Usage and generation of intermediate monomial files deactivated.

[starting computation of secondary sequence

on of secondary cohomologies and contributis mplete.

[Conputat i
ons conplete.

[Computation of the target cohomology group dimen
[cohono logy dimension

din H~iCA:

din H™iCA:

ALl dene. Programm run successfully conpleted.

The C+ core program takes care of the actual algorithm that
computes line bundles on toric spaces.
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3. Implementation: cohomCalg
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Example: The resolved P,

Infig13= P11222B1owl)

Rel:

s} {vl, v2, V3, v4, ¥5, vX},
Reisners) {{vl, v2}, {v3, v4, v5, vX}},

ons«) {{1, 0}, {1, 0}, {2, 1}, {2, 1}, {2, 1}, {0, 1}}

CalabiYauHyperSurface = {{8, 4}}:

CohomologyOf ["TangentBundle", P11222Blowlp, CalabiYauHyperSurface, "Calabi-Yau", "Verbose2"]

]
Os

@1 [O0s[Di]]

Gs[101% & Os[211%° @ Os[0.1]

S Lo o

px]

o o o w

cohomCalg
L

1
@1 [0s[5:]]
] &s Ts &
Os[84]

An 2 ‘ o2 104
A 3 Az 3 0
Ags 2 Ass 2 0
An 0 o 0 i
0 0 o0 0
Calculation of T, 1 homology done:

Total number of line bundles:
Newly computed:

Total time needed:

22
18
0.593 seconds

Ts

86
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3. Implementation: cohomCalg

CICY 4-fold in the context of F-Theory GUT Vacua

{
ess){vl, v2, ¥3, v4, ¥5, v6, vis, v, v8, v9, vi0},
eisners) {{v3, v9}, {v5, v9}, {v7, vi0}, {vi, v2, v3}, {v4, vis, v8}, {vd, v, v8}, {vd, v8, w9},

Insar= Exc

{v5, v6, vis}, {v5, v&, vi0}, {vi, v2, v§, vis}},

sEquivalence Relationss){{3, 3, 3, 3, 0}, {2, 2, 2, 2, 0}, {1, 0, 0, O, 03, {0, 0, 1, 0, 0}, {0, 0, 0, 1, 0},
0,1,0,0,0}, €0, 1,1,0,0}, {0, 0,1, 0,1}, {0, 0, 1, 0, 0}, 0, -1, -1, 1, -1}, {0, 0, 0, O, 1}}}:

CompleteTntersection= {{6, 6, 6, 6, 0}, {0, 0, 2, 1, 1}};

CohomologyOf [ "HodueDianond ", ExanpledFold, Completelntersection, "Calabi-Yau"]

1
0
5
; Caleslation of Hodgebismend cohemology done:
0
cohom@alg  rocar sumer of 1506 bunates: a7 4115 /4524 1115 6756 | [ =6768
Newly computed: 260 o
31,253 seconds

Total time needed: 5
0
1

[Grimm-Krause-Weigand '09]
y

The Mathematica frontend provides convenient functionality,
utilizing the previously discussed methods.
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Conclusions

Presented material:

m An efficient way to compute line bundle-valued cohomology group
dimensions of a toric variety.

® The algorithm implementation cohomCalg.

Not shown:

® Generalization to discrete group actions on X

Algorithm efficiency made a large scale scan of heterotic (0, 2)-models possible,
see arXiv:1106.4998.
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