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� Algorithm: arXiv:1003.5217

� Proofs: arXiv:1006.2392 & S.-T. Jow: arXiv:1006.0780

� Applications: arXiv:1010.3717

� Related: arXiv:1106.4998 & arXiv:1109.1571
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1. Motivation: Bundle constructions

In the context of toric geometry line bundles are appearing all over:
� Description of the tangent bundle:

0 −→ O⊕rX
α
↪−→

n⊕
i=1

OX (Di)
β
−� TX −→ 0

� Monad and extension bundle constructions:

0 −→ V
f
↪−→

rB⊕
i=1

OX (bi)
g
−�

rC⊕
i=1

OX (ci) −→ 0

0 −→
rA⊕
i=1

OX (ai)
f
↪−→W

g
−�

rC⊕
i=1

OX (ci) −→ 0

� Koszul sequence for subspaces:

0 −→ OX (−D) ↪−→ OX −� OD −→ 0
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1. Motivation: Line bundles and Cohomology

From short exact sequences of sums of line bundles one considers the
induced long exact sequences of the cohomology, e.g.:

0 −→ O⊕rX ↪−→
⊕
k

OX (Dk) −� TX −→ 0

Ù

0 // H0(X ;OX )⊕r //⊕
k

H0(X ;OX (Dk)) // H0(X ;TX )

// H1(X ;OX )⊕r //⊕
k

H1(X ;OX (Dk)) // H1(X ;TX )

// H2(X ;OX )⊕r //⊕
k

H2(X ;OX (Dk)) // H2(X ;TX ) // . . .
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1. Motivation: Why line bundle cohomology?
General idea: Avoid evaluating the actual mappings in sequences
and try to eliminate/relate as much as possible by exactness
considerations.

In the shown examples everything boils down to the computation of
line bundle-valued cohomology group dimension hi(X ;LX ).
Known methods:

� Isomorphisms: If you can find isomorphisms to spaces with known
cohomology, you don’t have to compute anything.

� Spectral sequences: The method of spectral sequences allows to
compute the cohomology of general spaces, but it is extremely
laborious to work with.

Ù Find an algorithmic method to compute line bundle cohomology!
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2. Algorithm: Overview / General Structure
Central idea: Take the Stanley-Reisner ideal IΣ of a toric variety XΣ

into account.

Resulting formula: (explained on next slides)

hi
(
X;OX (α)

)
=
∑
σ⊆[n]

σ̃,˜̂σ∈P(IΣ)

elements in “neg-group”︷ ︸︸ ︷
|(α, σ)| · β|σ|−i,σ̃(S/IΣ)︸ ︷︷ ︸

multiplicity factor

� Multiplicity factors only depend on geometry of the variety XΣ,
not on the bundle OX (α) — compute once for all bundles!

� Bundle-specific part is essentially counting the number of integer
solutions for a linear system.
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2. Algorithm: Preliminaries

Setting:

� X smooth toric variety

� Σ toric fan on the vertex set V ∼= [n] := {1, . . . , n}
� x1, . . . , xn homogeneous coordinates associated to the vertices

� S := C[x1, . . . , xn] Cox ring of homogeneous coordinates

Define σ̂ := [n] \ σ to be the complement to any σ ⊆ [n].

Two important ideals in the Cox ring:

� Stanley-Reisner ideal: IΣ := 〈xσ : σ̂ ∈ Σ〉
(generated by products of the coordinates that are
not allowed to vanish simultaneously)

� Irrelevant ideal: BΣ := 〈xσ : σ 6∈ Σ〉
Note: IΣ and BΣ are Alexander-dual to each other.
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2. Algorithm: Local cohomology
On a smooth variety Weil divisors are also Cartier and the class group
Cl(X ) := Div(X )/Div0(X ) is equivalent to the Picard group:

Cl(X ) ∼= Pic(X ) ∼= Zn−d

The Cox ring can then be decomposed by a Cl(X )-grading:

S =
⊕

α∈Cl(X )

Sα where Sα ∼= Γ
(
X ;OX (α)

)
Relationship between line bundle-valued cohomology and local
cohomology:

H i
(
X ;OX (α)

) ∼= H i+1
BΣ

(S)α︸ ︷︷ ︸
localized on irrelevant ideal

for α ∈ Cl(X ), i ≥ 1.

[Eisenbud-Mustaţǎ-Stillman ’00]
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2. Algorithm: Grading refinement

Each coordinate xi carries projective weights Q
(1)
i , . . . , Q

(n−d)
i .

Associate a basis vector ~ei ∈ Zn and define a map

f : Zn −→ Cl(X) ∼= Zn−d

~ei 7→ [Di] = (Q
(1)
i , . . . , Q

(n−d)
i ),

where

coordinate divisor︷ ︸︸ ︷
Di := {xi = 0} ⊂ X

Use this map to refine the grading on the localized cohomology:

H i
(
X ;OX (α)

)
=
⊕
~u∈Zn:
f(~u)=α

H i+1
BΣ

(S)~u for α ∈ Cl(X ), i ≥ 1.

However, there is a huge redundancy between the Zn-graded local
cohomology groups.
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2. Algorithm: Grading redundancy
However, there is a huge redundancy between the Zn-graded local
cohomology groups. Define

neg(~u) := {k ∈ [n] : uk < 0} (component indices where
~u has a negative value)

It follows that

H i
BΣ

(S)~u ∼= H i
BΣ

(S)~v ⇐⇒ neg(~u) = neg(~v)

[Jow ’10]

When this Zn-grading is translated back to monomials, the only
distinguishig factor is therefore which coordinates can appear with
negative powers.

S = C[x1, . . . , xn]  S
[

1
xneg(~u)

]
= C

[
x1, . . . , xn,

1
xneg(~u)

]
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2. Algorithm: Grouped dimension formula
If one is only interested in the dimension of the cohomology group,
this allows for big simplification:

hi
(
X ;OX (α)

)
=
∑
σ⊆[n]

elements in “neg-group”︷ ︸︸ ︷
|(α, σ)| · hi+1

BΣ
(S)σ︸ ︷︷ ︸

multiplicity factors

where (α, σ) := {~u ∈ Zn : f(~u) = α, neg(~u) = σ}.

Notes:

� The sum reduces to 2n terms.

� The multiplicity factors can be expressed as the graded Betti
number of a free resolution of the Stanley-Reisner ring S/IΣ:

hi+1
BΣ

(S)σ = β|σ|−i,σ̃(S/IΣ)
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2. Algorithm: Stanley-Reisner ideal reductions

Let IΣ = 〈S1, . . . , St〉 be the Stanley-Reisner ideal with t squarefree
monomial generators in x1, . . . , xn. For any subset τ ⊆ [t] define

~aτ := degx
(union of x-coordinates︷ ︸︸ ︷
lcmx{Si : i ∈ τ}

)
∈ Zn

P(IΣ) := {~aτ : τ ⊆ [t]}

(~aτ corresponds to the union of the xi-coordinates in the generators Sτ1 , . . . , Sτ|τ|
in terms of the Zn-grading, P(IΣ) is the set of all such unions.)

For σ ⊆ [n] define xσ :=
∏
i∈σ xi and σ̃ := degx(xσ) ∈ Zn.

(~aτ and σ̃ are vectors of 0s and 1s in Zn indicating if the xi is in the monomial)
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2. Algorithm: Stanley-Reisner ideal reductions

Main vanishing theorem: Only unions of coordinates in the
Stanley-Reisner ideal generators contribute to the dimension:

hi+1
BΣ

(S)σ = βr,σ̃(S/IΣ) = 0 for all σ ⊆ [n] where σ̃ 6∈ P(IΣ).

The same result holds for the complement σ̂, leading to

hi
(
X;OX(α)

)
=
∑
σ⊆[n]

σ̃,˜̂σ∈P(IΣ)

elements in “neg-group”︷ ︸︸ ︷
|(α, σ)| · β|σ|−i,σ̃(S/IΣ)︸ ︷︷ ︸

multiplicity factor
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2. Algorithm: Computing multiplicity factors
Let σ ⊆ [n] and define an abstract simplicial subcomplex of the full
complex ∆[t] on the Stanley-Reisner ideal generator by

Γσ := {τ ⊆ [t] : ~aτ = σ̃} =

a
a

d

b

d

b

d

a

dc

c c

d

a a

b

+ + +

The complex mappings are the usual “ordered alternating sum of
faces”-type of standard simplicial complexes.

Main computational result: The multiplicity factors can be
computed from the reduced cohomology of Γσ:

βr,σ̃(S/IΣ) = dimC H̃r−1(Γσ)
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3. Implementation: Computational complexity

In practice one can determine the simplicial complexes Γσ to compute
the multiplicity factors and the ”selection principle” of σ̃, ˜̂σ ∈ P(IΣ)
in one step by working through the powerset of Stanley-Reisner ideal
generators.

The exponential growth 2n with the number of vertizes is replaces by
an exponential growth 2t with the number of Stanley-Reisner ideal
generators.

Bottom line: Algorithm very efficient for t small!
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3. Implementation: cohomCalg

Ù for cohomCalg

The core algorithm can be tried
online.

cohomCalg

high-speed, cross-platform
C++ implementation cohomCalg

� Windows / Mac / Linux
� open source, GLPv3
� multi-core support

cohomCalg Koszul extension

Mathematica interface

� Hypersurfaces & complete
intersections

� (co-)tangent bundle, Λ2T ∗S
� Hodge diamond
� Monads
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3. Implementation: cohomCalg

Example: Line bundles on toric variety dP3

The C++ core program takes care of the actual algorithm that
computes line bundles on toric spaces.
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3. Implementation: cohomCalg

Example: The resolved P11222[8]
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3. Implementation: cohomCalg

CICY 4-fold in the context of F-Theory GUT Vacua

[Grimm-Krause-Weigand ’09]

The Mathematica frontend provides convenient functionality,
utilizing the previously discussed methods.
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Conclusions

Presented material:

� An efficient way to compute line bundle-valued cohomology group
dimensions of a toric variety.

� The algorithm implementation cohomCalg.

Not shown:

� Generalization to discrete group actions on X

Algorithm efficiency made a large scale scan of heterotic (0, 2)-models possible,
see arXiv:1106.4998.
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