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The Issue of Moduli Stabilization i
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To make contact with the observed world, 10d
string theory needs to be compactified down
to 4d.

= Various choices for 6d internal space
(topology, curvature, complex structure, ...)

Most common:

Compact Calabi-Yau threefolds
(complex Ricci-flat Kéhler manifolds
with SU(3) holonomy/structure group)

Focus here: type IIB string theory




-
Moduli of Calabi-Yau threefolds ‘i‘

The geometric moduli of a Calabi-Yau 3-fold X are determined by the
number of embedded 2- and 3-spheres.
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m Kihler moduli U*:
YL X) = b,
= 2-cycles
—
®m complex structure mod. T;:
h2(x) =% -1,
= 3-cycles

where the Betti numbers are cohomology dims. b; := dimg Hi (X).
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e
Unstabilized Moduli? =

—_—

There is a further moduli, the axio-dilaton modulus S
= () and string coupling

What happens to unstabilized moduli?
Compactification leaves effective 4d N'=1 supersymmetric theory.
Moduli fields appear as the massless scalar bosons in chiral superfields.

= Left “unstabilized” those massless superfields have no potential
and would lead to 5th force effects or missing energy in colliders.

Not observed in naturel = Moduli must be stabilized!

\

General idea:
Use fluxes to generate a potential and a nonzero vev for moduli.
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Effective Type IIB theory L

The IIB theory’s effective 4d N'=1 Kahler potential takes the form

Kz—log(S—FS)-lOg(—i/ Q;;/\Q;;)—Qlog v+ 53
X 293

where (a/)? corrections enter via the parameter &, i.e.

Important: If the o’ corrections are ignored (setting £ = 0),
the associated Kahler metric K,3 = 0,03K becomes block-diagonal
with respect to the three moduli types U, T; and S.

= Assumed in the KKLT moduli stabilization scenario.



e
The KKLT Scenario i

Using fluxes F3 = dCy and Hs = d B3, consider the

Gukov-Vafa-Witten
superpotential:

Wavw = /XQ;;/\Gg, Gy = Fy — iSH;
} F-terms
Fyr = /XXk/\G:a, Fr, = Kt Wavw, Fs=-—5—= Xﬂs/\é&
The associated F-term potential Vi can be brought into the form
Vi = X (K(;}]FUFU + KggFSFS).

which does not depend on the Kahler moduli (cancellation due to the
block-diagonal form of the (inverse) Kahler metric).

[Kachru-Kallosh-Linde-Trivedi 2003]
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e
The KKLT Scenario i

Minimizing Vi therefore only fixes the complex structure moduli and
axio-dilaton. What about the Kahler moduli?

In addition to Wayw, the superpotential W also involves
non-perturbative contributions from e.g. E3-brane instantons:

hb1(X)
Wap = Z A,(U*, S)e= e where T, = Z m;TZ—
P i=1

Here A,(U*,S) are treshold prefactors and
the coefficients a, determine the type of the contribution.

Define Wy = Wgyw|min to be the minimum of the GVW
superpotential for fixed complex structure moduli and axio-dilaton.
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e
The KKLT Scenario i

Consider the full superpotential W = Wy + Z A, (U*, S)em T,
p

\

F-term potential: Vi = X (K;%FTFT - 3|W|2)

Minimizing this potential stabilizes the Kahler moduli as well.

So, we have two-step moduli stabilization:

1. Stabilize the complex structure and axio-dilaton by the
Gukov-Vafa-Witten superpotential, i.e. via Gs-flux.

2. Then consider the non-perturbative contributions as a perturbation
around this minimum and stabilize the Kahler structure.
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The KKLT Scenario... the BUTs i

m KKLT only stabilizes to supersymmetric anti-de Sitter minima
(not exactly phenomenologically favoured...)

ds m Conceptual issues:
since Wy, depends on U* and S, the
AdS 2-step procedure is not always justified

= Problematic assumption:
neglecting o’ corrections made the

o ’ 2-step procedure viable in the first place
: flat (block-diagonal Kahler metric)
\

Can we do better?

10 of 32




Beyond KKLT B

...well, at least somewhat.

LET US...
® take o/ corrections into account

® neglect open string sector for the moment,
such that the D-term potential Vp =0

m ® assume a specific kind of Calabi-Yau manifold

\

Essentially, we aim to get a better handle on the interplay between
the perturbative and non-perturbative contributions.
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.
Swiss Cheese geometry 1_{‘

Let Dy,..., D, be a divisor basis via Div(X) & H'1(X;Z),
where D; C X is a 4-cycle of the Calabi-Yau threefold X.
[D;] denotes the Poincaré-dual (1,1)-form of the divisor D;.

Define triple intersection numbers

g = /X [Di] A (D3] A [Dy]

to encode the topology. The Kahler structure is expressed by the
expansion of the symplectic form J € Qb1 (X)

J = Zn:ti[Di],
=1

with ¢’ being equivalent to the Kihler parameters.
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Swiss Cheese geometry v_’__'

Note that complex structure and Kahler structure are not entirely
independent, which becomes apparent when expressing the
overall Calabi-Yau threefold volume

1 1
V:/XQ;;/\Q;;:?)!/XJ/\J/\J:fsliijkttjtk

The volumes of the 4-cycle divisors D; are given by

_ov_ 1
ot 2!

Ti

1 .
/ (D ATAJ = §I€Z’jktjtk
X

Note that the 4-cycle volumes serve as a Kahler structure parameter
basis as well, which is non-linearly related to the t*

T, = 1; +1b; where bZ:/C4
X
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.
Swiss Cheese geometry 1_{‘

The assumed type of Calabia-Yau threefold then requires that there is

B one 4-cycle that can get LARGE = 7,

® Nopan = h51H(X) — 1 small 4-cycles to generate non-perturbative
effects = 7,

such that the overall volume takes the form

imall

_TL2 - E Tsl

'54 =
>
Small cycles

< =<
| smalopes NN

N
\ \ Large cyc\e,

N
N Small cycles Large cxc\g‘
\ e
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e
The LARGE Volume Scenario W

By taking the overall volume V large, we have % < 1 such that we
can expand in the inverse volume. We are now taking the full
superpotential with the large 4-cycle contributions neglected
(since 1, > 7,):

Nsmall
i P i=1
¥
The expansion of the Vi contributions in J shows the following:
n K(}(EJFUFU ~ O(%) L] K;%FSFT ~ (’)(%)
n KgglFsFS ~ O(%) = K;%FTFT _ 3|W|2 - O(%)
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.
The LARGE Volume Scenario i

To leading order we then obtain the F-term potential:
Vp = e (K LFyFy + K FSFS) +O()

\

Same potential as in the 1st KKLT step!
(and only the Wgyw part of W contributes)

Once again use Wy = Wayw |min to stabilize U* and S. The (’)(%)
term of Vg as a perturbation then stabilizes the T; moduli.

= The benefit of the LARGE Volume Scenario is therefore a
V-controlled separation of the two moduli stabilization steps.
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________________________________________
The Swiss Cheese Landscape '_‘f_'

Swiss Cheese geometry is crucial for the LARGE Volume Scenario.
= Understand the actual LARGE Volume Limit!

[Cicoli-Conlon-Quevedo 2008]

At the moment there are less than 20 Swiss Cheese manifolds known.
" @%71,1,6,9[18]

u @%71’3710715[30]

m AP =0, 8

. lel,3,3,3,5 [15]

| | .7:11 = CYh.:s’Hl/ZQ

\
GOAL: Improve on that situation.
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-
Towards a Scanning Algorithm =

What goes into the Swiss Cheese definition?

® The (topological) intersection form, which in the end defines the
4-cycle volumes 7; and overall volume V.

¥
The entire Swiss Cheese geometry is
essentially encoded in the intersection form.

Biggest issue:
How to make the distinction between the large cycle divisor and the
small cycle divisor?

In the literature, this distinction has always been made by hand by
considering only a simple geometry...
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-
Towards a Scanning Algorithm =

Let X be a Calabi-Yau 3-fold and Dy, Dg,,...,Ds, be a
“convenient” divisor basis—the assumed situation in the literature.

m D, + Dsj gives another small divisor
® Dy, + Dy, gives a new (fake) “large” divisor

\
For a generic intersection form r;;;, and
the implied divisor basis D; is NOT in a
“convenient” basis.
A general base changes the number of
apparently large 4-cycles.

\/
Identify the minimal number of large 4-cycles... EFFICIENTLY

4 N
- S ~
Ny oo \
\ Small cycles N Qf\
N
N

@ Large cycle )

\
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-
Attempt O: Straight diagonalization ’.‘a..‘

So, basic goal:
In order to bring the volume form to

Nsmall

3 3
V:TL2 — E Ts; 2
i=1

all we need to do is diagonalize the intersection matrix ;.
¥

Naively, kijr — AizAj7A, 7Kk gives you
1,1 . .
h 2 cubic equations for the

(hl:l)2 — 1 components of the base change matrix.

\

Doesn’t scale too well...
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-
Aftempt 1. General base change ’i‘

Express the Kihler parameters ¢ in terms of the volumes 7;:

1 . 4 )
T = §nijktft’f = =ty /Tn)

Recall that ¢' and 7; are equivalent and non-linearly related.
= A base change on the D; is equivalent to a base change on the 7;.

Assume an arbitrary base change 7, — 7; = E Ai5T;.
J

Compute the overall volume with respect to the new basis 7;:

1 . .
V(7)) = Enijktz(\ﬁ')t](ﬁ)tk(ﬁ)
Solve for the A;; such that V has prototype form of 7 dependency.
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-
Aftempt 1: Example for P{, |, o[18] o

Consider X =P} | | 60[18] which has At = 2.

1
V=g (33t + 18t113 + 36t3)
) - {7 =tity + 3t3

0,1} {1,6}

Kijk =
1
™= (£] + 12t1t5 + 36t3)

{1,6} {6,36}

Question: Swiss Cheese or not?

Hint:
71 = (t1 + 3t2)te

1
Ty = 3 (tl + 6t2)2
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Attempt 1: Example for P} | | ¢ o[18] ‘i‘
ase change: | 1 )= ¢! ) 12
B hg-(fz)_<0 1><T2>_<$(t1+6t§)2>
\
1 ~% ~%
V=gl =)
¥




Aftempt 1. General base change ’i‘

Problem:
This is also just a little bit slow...

Can't even scan h!'! = 2 manifolds (simplest
case) in any reasonable amount of time...
= No chance for a large scale scan.

Thoughts:

® An arbitrary base change seems to be necessary.

® Do we really need to involve the ¢ Kihler parameters?
® Do we need to express the t’s in terms of the Tjs?

= Back to the drawing board...
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-
Attempt 2: "Dyadization” simplification ’i‘

What about a simplifying assumption?
k() = Kiee IS the symmetric intersection form on each divisor D; C X

Assume that each (@ is a dyadic tensor, i.e.

K0 = Ky = a0l = k¥ =aD g o

\

2
1 1 )
=g ugv Kiupt“t" = 3 < Eu a&”t“)

This assumption automatically takes care of producing the squared
form of the 4-cycle volumes, that guided in the previous example.
= Faster, but quite restrictive...
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R
Attempt 3: Faster base change ,_a__‘

Need to rewrite the problem in a more base-invariant fashion and
need to make the equation system structurally simpler.

Notation: £ = (t!,...,t") are the Kihler parameters.
= Express 4-cycle volume by 7; = P

Assuming that there is only one large cycle D, whose volume is taken
T, — 00 means that there is only one corresponding direction tf, in
the Kahler parameter space.

splitting: f=Mp+1t, = LVL:7, =00 < \— 00

With respect to a convenient basis Dy, Dg,, ..., Ds, the large and
small cycles are then characterized by

B, £0 e =0 2RGIE £0
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-
Attempt 3: Faster base change o

Rb1(X)
Now consider switching to an arbitrary basis: 7; = ZAiﬁj
=1

Note: Aij/’fgg = Aij/ [qu] A [D{,] = / [Dﬂ] A [Df)] = /@(f)

Dy

= Need to solve:
large 4-cycle: ffALjn(j)fL #0
small 4-cycles: f}iAsijm(j)fL =0
t_i;,kASin(j)E; £ 0
base change: det A;; # 0
Also need to stay within the Kahler cone:
{ (f); >0
(ts;); >0
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Attempt 3: Faster base change =

—_—

Recall from the LVL characterization that we need the superpotential

Nsmall
W=Wo+ Y Ai(U", S)e "
i=1

Note that this implies that the assumed divisor basis is effective,
i.e. at least the small base divisors Ds; are within the Kahler cone.

\

® Make certain we start with an arbitrary basis of effective divisors.

® Only allow for basis transformations Aij that
keep the basis effective, i.e. A;; > 0.
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Attempt 3: Faster base change ‘.{.

= Check if the equation system

(large 4-cycle: tj]‘JAij(j)fL #£0
small 4-cycles: t_iASij/@(j)t_'L =0

base change: det A;; # 0
keep effective: Ai; >0
Kahler cone: (tL);>0
( (t,); > 0

is solveable in ¢r,, {5 and Ajj...

= Surprisingly fast!
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R
Attempt 3: Faster base change ,_a__‘

Furthermore, for an arbitrary effective basis, the Kahler cone will not

correspond to t; > 0, as used earlier. In general the Kahler cone is a

subset thereof, which requires a proper redefinition of the parameters.
= Yet to be done...

\

A generic and efficient Swiss Cheese identification algorithm is much
harder to obtain than originally anticipated.

1. Redefine the basis / Kahler parameters, such that the basis divisors
are effective and t; > 0 corresponds to the Kahler cone.

2. Test if the prior outlined equation system is solveable. <
B
£y
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Outlook S

Some further question:

®m How generic is the Swiss Cheese condition in the landscape?
Check if the small 4-cycles are del Pezzo.

Study implications for inflation scenarios.

What about D-term potentials / open string sector.

Study hierarchy implications.
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The Alternate Swiss Cheese Landscape ‘:‘.a_‘
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