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The Issue of Moduli Stabilization

6

2

2

16

RL

To make contact with the observed world, 10d
string theory needs to be compactified down
to 4d.
Ù Various choices for 6d internal space
(topology, curvature, complex structure, ...)

Most common:
Compact Calabi-Yau threefolds
(complex Ricci-flat Kähler manifolds
with SU(3) holonomy/structure group)

Focus here: type IIB string theory
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Moduli of Calabi-Yau threefolds

The geometric moduli of a Calabi-Yau 3-fold X are determined by the
number of embedded 2- and 3-spheres.

1 b0

0 0 b1

0 h1,1 0 b2

1 h1,2 h1,2 1 b3

0 h1,1 0 b4

0 0 b5

1 b6

⇐⇒

� Kähler moduli Uk:
h1,1(X ) = b2,
Ù 2-cycles

� complex structure mod. Ti:
h1,2(X ) = b3

2 − 1,
Ù 3-cycles

where the Betti numbers are cohomology dims. bi := dimRH
i
dR(X ).
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Unstabilized Moduli?

There is a further moduli, the axio-dilaton modulus S
Ù C0 and string coupling

What happens to unstabilized moduli?
Compactification leaves effective 4d N=1 supersymmetric theory.
Moduli fields appear as the massless scalar bosons in chiral superfields.

Ù Left “unstabilized” those massless superfields have no potential
and would lead to 5th force effects or missing energy in colliders.

Not observed in nature! Ù Moduli must be stabilized!
Ù

General idea:
Use fluxes to generate a potential and a nonzero vev for moduli.
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Effective Type IIB theory

The IIB theory’s effective 4d N=1 Kähler potential takes the form

K = − log(S + S̄)− log

(
−i

∫
X

Ω3 ∧ Ω̄3

)
− 2 log

(
V̂ +

ξ

2g
3
2
s

)

where (α′)3 corrections enter via the parameter ξ, i.e.

ξ = −χ(X )
ζ(3)

2(2π)3

Important: If the α′ corrections are ignored (setting ξ = 0),
the associated Kähler metric Kαβ = ∂α∂βK becomes block-diagonal
with respect to the three moduli types Uk, Ti and S.

Ù Assumed in the KKLT moduli stabilization scenario.
6 of 32



The KKLT Scenario
Using fluxes F3 = dC2 and H3 = dB2, consider the

Gukov-Vafa-Witten
superpotential:

WGVW =

∫
X

Ω3 ∧G3, G3 = F̄3 − iSH̄3

Ù

F-terms

FUk =

∫
X
χk∧G3, FTi = KTiWGVW, FS = − 1

S + S̄

∫
X

Ω3∧ Ḡ3.

The associated F-term potential VF can be brought into the form

VF = eK
(
K−1
UŪ
FU F̄Ū +K−1

SS̄
FSF̄S̄

)
.

which does not depend on the Kähler moduli (cancellation due to the
block-diagonal form of the (inverse) Kähler metric).

[Kachru-Kallosh-Linde-Trivedi 2003]
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The KKLT Scenario

Minimizing VF therefore only fixes the complex structure moduli and
axio-dilaton. What about the Kähler moduli?

In addition to WGVW, the superpotential W also involves
non-perturbative contributions from e.g. E3-brane instantons:

Wnp =
∑
ρ

Aρ(U
k, S)e−aρTρ where Tρ =

h1,1(X )∑
i=1

mi
ρTi

Here Aρ(U
k, S) are treshold prefactors and

the coefficients aρ determine the type of the contribution.

Define W0 = WGVW|min to be the minimum of the GVW
superpotential for fixed complex structure moduli and axio-dilaton.

8 of 32



The KKLT Scenario

Consider the full superpotential W = W0 +
∑
ρ

Aρ(U
k, S)e−aρTρ .

Ù

F-term potential: VF = eK
(
K−1
T T̄
FT F̄T̄ − 3|W |2

)
Minimizing this potential stabilizes the Kähler moduli as well.

So, we have two-step moduli stabilization:

1. Stabilize the complex structure and axio-dilaton by the
Gukov-Vafa-Witten superpotential, i.e. via G3-flux.

2. Then consider the non-perturbative contributions as a perturbation
around this minimum and stabilize the Kähler structure.
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The KKLT Scenario... the BUTs

� KKLT only stabilizes to supersymmetric anti-de Sitter minima
(not exactly phenomenologically favoured...)

� Conceptual issues:
since Wnp depends on Uk and S, the
2-step procedure is not always justified

� Problematic assumption:
neglecting α′ corrections made the
2-step procedure viable in the first place
(block-diagonal Kähler metric)

Ù

Can we do better?
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Beyond KKLT

...well, at least somewhat.

LET US...

� take α′ corrections into account

� neglect open string sector for the moment,
such that the D-term potential VD = 0

� assume a specific kind of Calabi-Yau manifold
Ù

Essentially, we aim to get a better handle on the interplay between
the perturbative and non-perturbative contributions.
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Swiss Cheese geometry
Let D1, . . . , Dn be a divisor basis via Div(X ) ∼= H1,1(X ;Z),
where Di ⊂ X is a 4-cycle of the Calabi-Yau threefold X .
[Di] denotes the Poincaré-dual (1,1)-form of the divisor Di.

Define triple intersection numbers

κijk =

∫
X

[Di] ∧ [Dj ] ∧ [Dk]

to encode the topology. The Kähler structure is expressed by the
expansion of the symplectic form J ∈ Ω1,1(X )

J =

n∑
i=1

ti[Di],

with ti being equivalent to the Kähler parameters.
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Swiss Cheese geometry
Note that complex structure and Kähler structure are not entirely
independent, which becomes apparent when expressing the
overall Calabi-Yau threefold volume

V =

∫
X

Ω3 ∧ Ω̄3 =
1

3!

∫
X
J ∧ J ∧ J =

1

6
κijkt

itjtk

The volumes of the 4-cycle divisors Di are given by

τi =
∂V
∂ti

=
1

2!

∫
X

[Di] ∧ J ∧ J =
1

2
κijkt

jtk

Note that the 4-cycle volumes serve as a Kähler structure parameter
basis as well, which is non-linearly related to the ti:

Ti = τi + ibi where bi =

∫
X
C4
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Swiss Cheese geometry
The assumed type of Calabia-Yau threefold then requires that there is
� one 4-cycle that can get LARGE Ù τL

� Nsmall = h1,1(X )− 1 small 4-cycles to generate non-perturbative
effects Ù τsi

such that the overall volume takes the form

V = τL
3
2 −

Nsmall∑
i=1

τsi

3
2

Large cycle
Small cycles

Large cycleSmall cycles
Large cycle

Small cycles

14 of 32



The LARGE Volume Scenario

By taking the overall volume V large, we have 1
V � 1 such that we

can expand in the inverse volume. We are now taking the full
superpotential with the large 4-cycle contributions neglected
(since τL � τsi):

W =

∫
X

Ω3 ∧G3 +
∑
ρ

Aρ(U
k)e−aρTρ where Tρ =

Nsmall∑
i=1

mi
ρTsi

Ù

The expansion of the VF contributions in 1
V shows the following:

� K−1
UŪ
FU F̄Ū ∼ O( 1

V0 )

� K−1
SS̄
FSF̄S̄ ∼ O( 1

V0 )

� K−1
ST̄
FSF̄T̄ ∼ O( 1

V1 )

� K−1
T T̄
FT F̄T̄ − 3|W |2 ∼ O( 1

V1 )
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The LARGE Volume Scenario

To leading order we then obtain the F-term potential:

VF = eK
(
K−1
UŪ
FU F̄Ū +K−1

SS̄
FSF̄S̄

)
+O( 1

V3 )

Ù

Same potential as in the 1st KKLT step!
(and only the WGVW part of W contributes)

Once again use W0 = WGVW|min to stabilize Uk and S. The O( 1
V3 )

term of VF as a perturbation then stabilizes the Ti moduli.

Ù The benefit of the LARGE Volume Scenario is therefore a
V-controlled separation of the two moduli stabilization steps.
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The Swiss Cheese Landscape

Swiss Cheese geometry is crucial for the LARGE Volume Scenario.
Ù Understand the actual LARGE Volume Limit!

[Cicoli-Conlon-Quevedo 2008]

At the moment there are less than 20 Swiss Cheese manifolds known.

� P̃4
1,1,1,6,9[18]

� P̃4
1,1,3,10,15[30]

� M
(dP1)n

n , n = 0, . . . , 8

� P̃4
1,3,3,3,5[15]

� F11 = CYh•=3,111/Z2
Ù

GOAL: Improve on that situation.
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Towards a Scanning Algorithm

What goes into the Swiss Cheese definition?

� The (topological) intersection form, which in the end defines the
4-cycle volumes τi and overall volume V.

Ù

The entire Swiss Cheese geometry is
essentially encoded in the intersection form.

Biggest issue:
How to make the distinction between the large cycle divisor and the
small cycle divisor?

In the literature, this distinction has always been made by hand by
considering only a simple geometry...
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Towards a Scanning Algorithm

Let X be a Calabi-Yau 3-fold and DL, Ds1 , . . . , Dsn be a
“convenient” divisor basis—the assumed situation in the literature.

� Dsi +Dsj gives another small divisor

� DL +Dsi gives a new (fake) “large” divisor

Ù

For a generic intersection form κijk and
the implied divisor basis Di is NOT in a
“convenient” basis.
A general base changes the number of
apparently large 4-cycles.

Ù

Large cycle
Small cycles

Identify the minimal number of large 4-cycles... EFFICIENTLY
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Attempt 0: Straight diagonalization
So, basic goal:
In order to bring the volume form to

V = τL
3
2 −

Nsmall∑
i=1

τsi

3
2

all we need to do is diagonalize the intersection matrix κijk.

Ù

Naively, κijk → AĩıAj̃Akk̃κı̃̃k gives you(
h1,1+2

3

)
cubic equations for the

(h1,1)2 − 1 components of the base change matrix.
Ù

Doesn’t scale too well...
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Attempt 1: General base change
Express the Kähler parameters ti in terms of the volumes τi:

τi =
1

2
κijkt

jtk ⇐⇒ ti = ti(
√
τ1, . . . ,

√
τn)

Recall that ti and τi are equivalent and non-linearly related.
Ù A base change on the Di is equivalent to a base change on the τi.

Assume an arbitrary base change τi → τ̃i =
∑
̃

Aĩτ̃.

Compute the overall volume with respect to the new basis τ̃i:

V(τ̃i) =
1

6
κijkt

i(
√
τ̃)tj(

√
τ̃)tk(

√
τ̃)

Solve for the Aij such that V has prototype form of τ̃ dependency.
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Attempt 1: Example for P4
1,1,1,6,9[18]

Consider X = P4
1,1,1,6,9[18] which has h1,1 = 2.

κijk =

(
{0, 1} {1, 6}
{1, 6} {6, 36}

)
Ù


V =

1

6

(
3t21t2 + 18t1t

2
2 + 36t32

)
τ1 = t1t2 + 3t22

τ2 =
1

2

(
t21 + 12t1t2 + 36t22

)
Question: Swiss Cheese or not?

Hint:
τ1 = (t1 + 3t2)t2

τ2 =
1

2
(t1 + 6t2)2
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Attempt 1: Example for P4
1,1,1,6,9[18]

Base change:

(
τ̃1

τ̃2

)
=

(
−6 1

0 1

)(
τ1

τ2

)
=

(
1
2 t

2
1

1
2

(
t1 + 6t22

)2
)

Ù

V =
1

9
√

2

(
τ̃

3
2

2 − τ̃
3
2

1

)
Ù
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Attempt 1: General base change

Problem:
This is also just a little bit slow...

Can’t even scan h1,1 = 2 manifolds (simplest
case) in any reasonable amount of time...
Ù No chance for a large scale scan.

Thoughts:

� An arbitrary base change seems to be necessary.

� Do we really need to involve the ti Kähler parameters?

� Do we need to express the tis in terms of the τjs?

Ù Back to the drawing board...
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Attempt 2: “Dyadization” simplification
What about a simplifying assumption?
κ(i) = κi•• is the symmetric intersection form on each divisor Di ⊂ X

Assume that each κ(i) is a dyadic tensor, i.e.

κ(i)
uv = κiuv = a(i)

u a
(i)
v ⇐⇒ κ(i) = a(i) ⊗ a(i)

Ù
τi =

1

2

∑
u,v

κiuvt
utv =

1

2

(∑
u

a(i)
u t

u

)2

This assumption automatically takes care of producing the squared
form of the 4-cycle volumes, that guided in the previous example.

Ù Faster, but quite restrictive...
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Attempt 3: Faster base change
Need to rewrite the problem in a more base-invariant fashion and
need to make the equation system structurally simpler.

Notation: ~t = (t1, . . . , tn) are the Kähler parameters.
Ù Express 4-cycle volume by τi = ~t∗κ(i)~t.

Assuming that there is only one large cycle DL whose volume is taken
τL →∞ means that there is only one corresponding direction ~tL in
the Kähler parameter space.

splitting: ~t = λ~tL + ~ts Ù LVL: τL →∞ ⇐⇒ λ→∞

With respect to a convenient basis DL, Ds1 , . . . , Dsn the large and
small cycles are then characterized by

~t∗Lκ
(L)~tL 6= 0 ~t∗Lκ

(si)~tL = 0 ~t∗sκ
(si)~ts 6= 0
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Attempt 3: Faster base change

Now consider switching to an arbitrary basis: τi =

h1,1(X )∑
̃=1

Aĩτ̃̃

Note: Aĩκ
(̃)
ũṽ = Aĩ

∫
D̃̃

[D̃ũ] ∧ [D̃ṽ] =

∫
AĩD̃̃

[D̃ũ] ∧ [D̃ṽ] = κ
(i)
ũṽ

Ù Need to solve:
large 4-cycle: ~t∗LAL̃κ

(̃)~tL 6= 0

small 4-cycles: ~t∗LAsi ̃κ
(̃)~tL = 0

~t∗sAsi ̃κ
(̃)~ts 6= 0

base change: detAĩ 6= 0

Also need to stay within the Kähler cone:{
(~tL)̃ ≥ 0

(~tsi)̃ ≥ 0
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Attempt 3: Faster base change

Recall from the LVL characterization that we need the superpotential

W = W0 +

Nsmall∑
i=1

Ai(U
k, S)e−aiTi

Note that this implies that the assumed divisor basis is effective,
i.e. at least the small base divisors Dsi are within the Kähler cone.

Ù
� Make certain we start with an arbitrary basis of effective divisors.

� Only allow for basis transformations Aij̃ that
keep the basis effective, i.e. Aĩ ≥ 0.
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Attempt 3: Faster base change
Ù Check if the equation system

large 4-cycle: ~t∗LAL̃κ
(̃)~tL 6= 0

small 4-cycles: ~t∗LAsi ̃κ
(̃)~tL = 0

~t∗sAsi ̃κ
(̃)~ts 6= 0

base change: detAĩ 6= 0

keep effective: Aĩ ≥ 0

Kähler cone: (~tL)̃ ≥ 0

(~tsi)̃ ≥ 0

is solveable in ~tL, ~ts and Aĩ...

Ù Surprisingly fast!
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Attempt 3: Faster base change

Furthermore, for an arbitrary effective basis, the Kähler cone will not
correspond to tı̃ ≥ 0, as used earlier. In general the Kähler cone is a
subset thereof, which requires a proper redefinition of the parameters.

Ù Yet to be done...

Ù

A generic and efficient Swiss Cheese identification algorithm is much
harder to obtain than originally anticipated.

1. Redefine the basis / Kähler parameters, such that the basis divisors
are effective and tı̃ ≥ 0 corresponds to the Kähler cone.

2. Test if the prior outlined equation system is solveable.
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Outlook

Some further question:

� How generic is the Swiss Cheese condition in the landscape?

� Check if the small 4-cycles are del Pezzo.

� Study implications for inflation scenarios.

� What about D-term potentials / open string sector.

� Study hierarchy implications.
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The Alternate Swiss Cheese Landscape
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