

Benjamin Jurke

Northeastern University Boston, MA

— Jan 10, 2012 —

Outline

- 1. Moduli Stabilization
- 2. The Large Volume Scenario
- 3. Swiss Cheese Geometry
- 4. Exploring the Swiss Cheese Landscape

In collaboration with

The Issue of Moduli Stabilization

To make contact with the observed world, 10d string theory needs to be compactified down to 4d.

 \rightarrow Various choices for 6d internal space (topology, curvature, complex structure, ...)

Most common:

Compact Calabi-Yau threefolds (complex Ricci-flat Kähler manifolds with SU(3) holonomy/structure group)

Focus here: type IIB string theory

Moduli of Calabi-Yau threefolds

The geometric moduli of a Calabi-Yau 3-fold \mathcal{X} are determined by the number of embedded 2- and 3-spheres.

where the Betti numbers are cohomology dims. $b_i := \dim_{\mathbb{R}} H^i_{dR}(\mathcal{X})$.

There is a further moduli, the axio-dilaton modulus S \twoheadrightarrow C_0 and string coupling

What happens to unstabilized moduli? Compactification leaves effective 4d $\mathcal{N}{=}1$ supersymmetric theory. Moduli fields appear as the massless scalar bosons in chiral superfields.

 \rightarrow Left "unstabilized" those massless superfields have no potential and would lead to 5th force effects or missing energy in colliders.

Not observed in nature! -> Moduli must be stabilized!

ţ

General idea:

Use fluxes to generate a potential and a nonzero vev for moduli.

Effective Type IIB theory

The IIB theory's effective 4d $\mathcal{N}{=}1$ Kähler potential takes the form

$$K = -\log(S + \bar{S}) - \log\left(-i\int_{\mathcal{X}}\Omega_3 \wedge \bar{\Omega}_3\right) - 2\log\left(\hat{\mathcal{V}} + \frac{\xi}{2g_s^{\frac{3}{2}}}\right)$$

where $(\alpha')^3$ corrections enter via the parameter ξ , i.e.

$$\xi = -\chi(\mathcal{X}) \frac{\zeta(3)}{2(2\pi)^3}$$

Important: If the α' corrections are ignored (setting $\xi = 0$), the associated Kähler metric $K_{\alpha\beta} = \partial_{\alpha}\partial_{\beta}K$ becomes block-diagonal with respect to the three moduli types U^k , T_i and S.

→ Assumed in the KKLT moduli stabilization scenario.

The KKLT Scenario

Using fluxes $F_3 = dC_2$ and $H_3 = dB_2$, consider the

Gukov-Vafa-Witten
superpotential:

$$W_{\text{GVW}} = \int_{\mathcal{X}} \Omega_3 \wedge G_3, \quad G_3 = \bar{F}_3 - iS\bar{H}_3$$

 \downarrow F-terms
 $F_{U^k} = \int_{\mathcal{X}} \chi_k \wedge G_3, \quad F_{T_i} = K_{T_i} W_{\text{GVW}}, \quad F_S = -\frac{1}{S + \bar{S}} \int_{\mathcal{X}} \Omega_3 \wedge \bar{G}_3$

The associated F-term potential V_F can be brought into the form

$$V_F = e^K \left(K_{U\bar{U}}^{-1} F_U \bar{F}_{\bar{U}} + K_{S\bar{S}}^{-1} F_S \bar{F}_{\bar{S}} \right).$$

which does not depend on the Kähler moduli (cancellation due to the block-diagonal form of the (inverse) Kähler metric).

ŀ

Minimizing V_F therefore only fixes the complex structure moduli and axio-dilaton. What about the Kähler moduli?

In addition to $W_{\rm GVW}$, the superpotential W also involves non-perturbative contributions from e.g. E3-brane instantons:

$$W_{\rm np} = \sum_{\rho} A_{\rho}(U^k, S) e^{-a_{\rho}T_{\rho}} \quad \text{where} \quad T_{\rho} = \sum_{i=1}^{h^{1,1}(\mathcal{X})} m_{\rho}^i T_i$$

Here $A_{\rho}(U^k,S)$ are treshold prefactors and the coefficients a_{ρ} determine the type of the contribution.

Define $W_0 = W_{\text{GVW}}|_{\text{min}}$ to be the minimum of the GVW superpotential for fixed complex structure moduli and axio-dilaton.

The KKLT Scenario

Consider the full superpotential $W = W_0 + \sum_{\rho} A_{\rho}(U^k, S) e^{-a_{\rho}T_{\rho}}.$

F-term potential: $V_F = e^K \left(K_{T\bar{T}}^{-1} F_T \bar{F}_{\bar{T}} - 3|W|^2 \right)$ Minimizing this potential stabilizes the Kähler moduli as well.

So, we have two-step moduli stabilization:

- 1. Stabilize the complex structure and axio-dilaton by the Gukov-Vafa-Witten superpotential, i.e. via G_3 -flux.
- 2. Then consider the non-perturbative contributions as a perturbation around this minimum and stabilize the Kähler structure.

The KKLT Scenario... the BUTs

 KKLT only stabilizes to supersymmetric anti-de Sitter minima (not exactly phenomenologically favoured...)

Conceptual issues:

since $W_{\rm np}$ depends on U^k and S, the 2-step procedure is not always justified

Problematic assumption:

neglecting α' corrections made the 2-step procedure viable in the first place (block-diagonal Kähler metric)

ţ

Can we do better?

Beyond KKLT

...well, at least somewhat.

LET US...

- $\hfill \ensuremath{\,^{\prime}}$ take α' corrections into account
- neglect open string sector for the moment, such that the D-term potential $V_D = 0$
- assume a specific kind of Calabi-Yau manifold

ţ

Essentially, we aim to get a better handle on the interplay between the perturbative and non-perturbative contributions.

Swiss Cheese geometry

Let D_1, \ldots, D_n be a divisor basis via $\operatorname{Div}(\mathcal{X}) \cong H^{1,1}(\mathcal{X};\mathbb{Z})$, where $D_i \subset \mathcal{X}$ is a **4-cycle** of the Calabi-Yau threefold \mathcal{X} . $[D_i]$ denotes the Poincaré-dual (1,1)-form of the divisor D_i .

Define triple intersection numbers

$$\kappa_{ijk} = \int_{\mathcal{X}} [D_i] \wedge [D_j] \wedge [D_k]$$

to encode the topology. The Kähler structure is expressed by the expansion of the symplectic form $J \in \Omega^{1,1}(\mathcal{X})$

$$J = \sum_{i=1}^{n} t^{i} [D_{i}],$$

with t^i being equivalent to the Kähler parameters.

Swiss Cheese geometry

Note that complex structure and Kähler structure are not entirely independent, which becomes apparent when expressing the overall Calabi-Yau threefold volume

$$\mathcal{V} = \int_{\mathcal{X}} \Omega_3 \wedge \bar{\Omega}_3 = \frac{1}{3!} \int_{\mathcal{X}} J \wedge J \wedge J = \frac{1}{6} \kappa_{ijk} t^i t^j t^k$$

The volumes of the 4-cycle divisors D_i are given by

$$\tau_i = \frac{\partial \mathcal{V}}{\partial t^i} = \frac{1}{2!} \int_{\mathcal{X}} [D_i] \wedge J \wedge J = \frac{1}{2} \kappa_{ijk} t^j t^k$$

Note that the 4-cycle volumes serve as a Kähler structure parameter basis as well, which is non-linearly related to the t^i :

$$T_{i}= au_{i}+\mathrm{i}b_{i}$$
 where $b_{i}=\int_{\mathcal{X}}C_{4}$

Swiss Cheese geometry

The assumed type of Calabia-Yau threefold then requires that there is

- one 4-cycle that can get LARGE $\rightarrow \tau_{\rm L}$
- $N_{\text{small}} = h^{1,1}(\mathcal{X}) 1$ small 4-cycles to generate non-perturbative effects $\rightarrow \tau_{s_i}$

such that the overall volume takes the form

By taking the overall volume $\mathcal V$ large, we have $\frac{1}{\mathcal V}\ll 1$ such that we can expand in the inverse volume. We are now taking the full superpotential with the large 4-cycle contributions neglected (since $\tau_L\gg\tau_{s_i}$):

$$W = \int_{\mathcal{X}} \Omega_3 \wedge G_3 + \sum_{\rho} A_{\rho}(U^k) e^{-a_{\rho}T_{\rho}} \quad \text{where} \quad T_{\rho} = \sum_{i=1}^{N_{\text{small}}} m_{\rho}^i T_{\mathbf{s}_i}$$

The expansion of the V_F contributions in $\frac{1}{V}$ shows the following:

$$\begin{array}{ll} \bullet & K_{U\bar{U}}^{-1}F_U\bar{F}_{\bar{U}} \sim \mathcal{O}(\frac{1}{\mathcal{V}^0}) \\ \bullet & K_{S\bar{S}}^{-1}F_S\bar{F}_{\bar{S}} \sim \mathcal{O}(\frac{1}{\mathcal{V}^0}) \\ \bullet & K_{S\bar{S}}^{-1}F_S\bar{F}_{\bar{S}} \sim \mathcal{O}(\frac{1}{\mathcal{V}^0}) \\ \end{array} \\ \begin{array}{ll} \bullet & K_{T\bar{T}}^{-1}F_T\bar{F}_{\bar{T}} - 3|W|^2 \sim \mathcal{O}(\frac{1}{\mathcal{V}^1}) \\ \end{array}$$

15 of 32

To leading order we then obtain the F-term potential:

$$V_F = e^K \left(K_{U\bar{U}}^{-1} F_U \bar{F}_{\bar{U}} + K_{S\bar{S}}^{-1} F_S \bar{F}_{\bar{S}} \right) + \mathcal{O}(\frac{1}{\nu^3})$$

ţ

Same potential as in the 1st KKLT step! (and only the W_{GVW} part of W contributes)

Once again use $W_0 = W_{\text{GVW}}|_{\text{min}}$ to stabilize U^k and S. The $\mathcal{O}(\frac{1}{\mathcal{V}^3})$ term of V_F as a perturbation then stabilizes the T_i moduli.

 \rightarrow The benefit of the LARGE Volume Scenario is therefore a \mathcal{V} -controlled separation of the two moduli stabilization steps.

The Swiss Cheese Landscape

Swiss Cheese geometry is crucial for the LARGE Volume Scenario. → Understand the actual LARGE Volume Limit!

[Cicoli-Conlon-Quevedo 2008]

At the moment there are less than 20 Swiss Cheese manifolds known.

- $\mathbb{P}^{4}_{1,1,1,6,9}[18]$ $\mathbb{\tilde{P}}^{4}_{1,1,3,10,15}[30]$ $\mathbb{\mathcal{F}}^{4}_{1,1,3,10,15}[30]$ $\mathbb{\mathcal{F}}_{1,1} = CY^{h^{\bullet}=3,111}/\mathbb{Z}_{2}$
- $M_n^{(dP_1)^n}$, $n = 0, \dots, 8$

ţ

GOAL: Improve on that situation.

What goes into the Swiss Cheese definition?

 The (topological) intersection form, which in the end defines the 4-cycle volumes τ_i and overall volume V.

ţ

The entire Swiss Cheese geometry is essentially encoded in the intersection form.

Biggest issue:

How to make the distinction between the large cycle divisor and the small cycle divisor?

In the literature, this distinction has always been made by hand by considering only a simple geometry...

Towards a Scanning Algorithm

Let \mathcal{X} be a Calabi-Yau 3-fold and $D_{L}, D_{s_1}, \ldots, D_{s_n}$ be a "convenient" divisor basis—the assumed situation in the literature.

- $D_{\mathbf{s}_i} + D_{\mathbf{s}_j}$ gives another small divisor
- $D_{\rm L} + D_{{
 m s}_i}$ gives a new (fake) "large" divisor

ţ

For a generic intersection form κ_{ijk} and the implied divisor basis D_i is NOT in a "convenient" basis.

A general base changes the number of apparently large 4-cycles.

Identify the minimal number of large 4-cycles... EFFICIENTLY

Attempt 0: Straight diagonalization

So, **basic goal**: In order to bring the volume form to

$$\mathcal{V} = au_{\mathrm{L}}^{rac{3}{2}} - \sum_{i=1}^{N_{\mathrm{small}}} au_{\mathbf{s}_i}^{rac{3}{2}}$$

all we need to do is diagonalize the intersection matrix κ_{ijk} .

Naively, $\kappa_{ijk} \rightarrow A_{i\bar{\imath}}A_{j\bar{\jmath}}A_{k\bar{k}}\kappa_{\bar{\imath}\bar{\jmath}k}$ gives you $\binom{h^{1,1}+2}{3}$ cubic equations for the $(h^{1,1})^2 - 1$ components of the base change matrix. U
Doesn't scale too well...

Attempt 1: General base change

Express the Kähler parameters t^i in terms of the volumes τ_i :

$$\tau_i = \frac{1}{2} \kappa_{ijk} t^j t^k \iff t^i = t^i (\sqrt{\tau_1}, \dots, \sqrt{\tau_n})$$

Recall that t^i and τ_i are equivalent and non-linearly related. \Rightarrow A base change on the D_i is equivalent to a base change on the τ_i . Assume an arbitrary base change $\tau_i \rightarrow \tilde{\tau}_i = \sum_{\tilde{j}} A_{i\tilde{j}}\tau_{\tilde{j}}$.

Compute the overall volume with respect to the new basis $\tilde{\tau}_i$:

$$\mathcal{V}(\tilde{\tau}_i) = \frac{1}{6} \kappa_{ijk} t^i(\sqrt{\tilde{\tau}}) t^j(\sqrt{\tilde{\tau}}) t^k(\sqrt{\tilde{\tau}})$$

Solve for the A_{ij} such that \mathcal{V} has prototype form of $\tilde{\tau}$ dependency.

21 of 32

Attempt 1: Example for $\mathbb{P}^4_{1,1,1,6,9}[18]$

Consider $\mathcal{X} = \mathbb{P}^4_{1,1,1,6,9}[18]$ which has $h^{1,1} = 2$.

$$\kappa_{ijk} = \begin{pmatrix} \{0,1\} & \{1,6\} \\ \{1,6\} & \{6,36\} \end{pmatrix} \rightarrow \begin{cases} \mathcal{V} = \frac{1}{6} \left(3t_1^2 t_2 + 18t_1 t_2^2 + 36t_2^3 \right) \\ \tau_1 = t_1 t_2 + 3t_2^2 \\ \tau_2 = \frac{1}{2} \left(t_1^2 + 12t_1 t_2 + 36t_2^2 \right) \end{cases}$$

Question: Swiss Cheese or not?

Hint:

$$\tau_1 = (t_1 + 3t_2)t_2$$

$$\tau_2 = \frac{1}{2} (t_1 + 6t_2)^2$$

22 of 32

Base change: $\begin{pmatrix} \tilde{\tau}_1 \\ \tilde{\tau}_2 \end{pmatrix} = \begin{pmatrix} -6 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \tau_1 \\ \tau_2 \end{pmatrix} = \begin{pmatrix} \frac{1}{2}t_1^2 \\ \frac{1}{2}(t_1 + 6t_2^2)^2 \end{pmatrix}$ $\mathcal{V} = \frac{1}{9\sqrt{2}} \left(\tilde{\tau}_2^{\frac{3}{2}} - \tilde{\tau}_1^{\frac{3}{2}} \right)$

Attempt 1: General base change

Problem:

This is also just a *little* bit slow...

Can't even scan $h^{1,1} = 2$ manifolds (simplest case) in any reasonable amount of time...

→ No chance for a large scale scan.

Thoughts:

- An arbitrary base change seems to be necessary.
- Do we really need to involve the t^i Kähler parameters?
- Do we need to express the t^i s in terms of the τ_j s?

→ Back to the drawing board...

Attempt 2: "Dyadization" simplification

What about a simplifying assumption?

 $\kappa^{(i)} = \kappa_{i \bullet \bullet}$ is the symmetric intersection form on each divisor $D_i \subset \mathcal{X}$

Assume that each $\kappa^{(i)}$ is a dyadic tensor, i.e.

$$\kappa_{uv}^{(i)} = \kappa_{iuv} = a_u^{(i)} a_v^{(i)} \iff \kappa^{(i)} = a^{(i)} \otimes a^{(i)}$$

t

$$\tau_i = \frac{1}{2} \sum_{u,v} \kappa_{iuv} t^u t^v = \frac{1}{2} \left(\sum_u a_u^{(i)} t^u \right)^2$$

This assumption automatically takes care of producing the squared form of the 4-cycle volumes, that guided in the previous example. → Faster, but quite restrictive...

Attempt 3: Faster base change

Need to rewrite the problem in a more base-invariant fashion and need to make the equation system structurally simpler.

Notation:
$$\vec{t} = (t^1, \dots, t^n)$$
 are the Kähler parameters.
 \rightarrow Express 4-cycle volume by $\tau_i = \vec{t}^* \kappa^{(i)} \vec{t}$.

Assuming that there is only one large cycle $D_{\rm L}$ whose volume is taken $au_{
m L}
ightarrow \infty$ means that there is only one corresponding direction $ec{t}_{
m L}$ in the Kähler parameter space.

splitting: $\vec{t} = \lambda \vec{t}_{\rm L} + \vec{t}_{\rm s} \rightarrow \text{LVL:} \tau_{\rm L} \rightarrow \infty \iff \lambda \rightarrow \infty$

With respect to a convenient basis $D_{L}, D_{S_1}, \ldots, D_{S_n}$ the large and PRELIMINAR small cycles are then characterized by

$$\vec{t}_{\mathrm{L}}^{*}\kappa^{(\mathrm{L})}\vec{t}_{\mathrm{L}}\neq 0 \qquad \vec{t}_{\mathrm{L}}^{*}\kappa^{(\mathrm{s}_{i})}\vec{t}_{\mathrm{L}}=0 \qquad \vec{t}_{\mathrm{s}}^{*}\kappa^{(\mathrm{s}_{i})}\vec{t}_{\mathrm{s}}\neq 0$$

PRELIMINAR

 $h^{1,1}(\mathcal{X})$

Attempt 3: Faster base change

Now consider switching to an arbitrary basis: $au_i = \sum A_{i ilde{\jmath}} ilde{ au}_{ ilde{\jmath}}$

Note:
$$A_{i\tilde{\jmath}}\kappa_{\tilde{u}\tilde{v}}^{(\tilde{\jmath})} = A_{i\tilde{\jmath}}\int_{\tilde{D}_{\tilde{\jmath}}} [\tilde{D}_{\tilde{u}}] \wedge [\tilde{D}_{\tilde{v}}] = \int_{A_{i\tilde{\jmath}}\tilde{D}_{\tilde{\jmath}}} [\tilde{D}_{\tilde{u}}] \wedge [\tilde{D}_{\tilde{v}}] = \kappa_{\tilde{u}\tilde{v}}^{(i)}$$

→ Need to solve:

$$\begin{cases} \text{large 4-cycle:} \quad \vec{t}_{\mathrm{L}}^* A_{\mathrm{L}\tilde{\jmath}} \kappa^{(\tilde{\jmath})} \vec{t}_{\mathrm{L}} \neq 0 \\ \text{small 4-cycles:} \quad \vec{t}_{\mathrm{L}}^* A_{\mathrm{s}_i \tilde{\jmath}} \kappa^{(\tilde{\jmath})} \vec{t}_{\mathrm{L}} = 0 \\ \quad \vec{t}_{\mathrm{s}}^* A_{\mathrm{s}_i \tilde{\jmath}} \kappa^{(\tilde{\jmath})} \vec{t}_{\mathrm{s}} \neq 0 \\ \text{base change:} \quad \det A_{i\tilde{\jmath}} \neq 0 \end{cases}$$

Also need to stay within the Kähler cone:

$$\begin{cases} (\vec{t}_{\rm L})_{\tilde{\jmath}} \ge 0\\ (\vec{t}_{{\rm s}_i})_{\tilde{\jmath}} \ge 0 \end{cases}$$

PRELIMINAL

Recall from the LVL characterization that we need the superpotential

$$W = W_0 + \sum_{i=1}^{N_{\text{small}}} A_i(U^k, S) e^{-a_i T_i}$$

Note that this implies that the **assumed divisor basis is effective**, i.e. at least the small base divisors D_{s_i} are within the Kähler cone.

t

- Make certain we start with an arbitrary basis of effective divisors.
- Only allow for basis transformations A_{ij} that keep the basis effective, i.e. A_{ij} ≥ 0.

Attempt 3: Faster base change

→ Check if the equation system

 $\begin{cases} \text{large 4-cycle:} \quad \vec{t}_{\mathrm{L}}^* A_{\mathrm{L}\tilde{\jmath}} \kappa^{(\tilde{\jmath})} \vec{t}_{\mathrm{L}} \neq 0 \\ \text{small 4-cycles:} \quad \vec{t}_{\mathrm{L}}^* A_{\mathrm{s}_{i}\tilde{\jmath}} \kappa^{(\tilde{\jmath})} \vec{t}_{\mathrm{L}} = 0 \\ \quad \vec{t}_{\mathrm{s}}^* A_{\mathrm{s}_{i}\tilde{\jmath}} \kappa^{(\tilde{\jmath})} \vec{t}_{\mathrm{s}} \neq 0 \\ \text{base change:} \quad \det A_{i\tilde{\jmath}} \neq 0 \\ \text{keep effective:} \quad A_{i\tilde{\jmath}} \geq 0 \\ \text{Kähler cone:} \quad (\vec{t}_{\mathrm{L}})_{\tilde{\jmath}} \geq 0 \\ \quad (\vec{t}_{\mathrm{s}_{i}})_{\tilde{\jmath}} \geq 0 \end{cases}$

is solveable in $\vec{t}_{\rm L}$, $\vec{t}_{\rm s}$ and $A_{i\tilde{j}}$...

Furthermore, for an arbitrary effective basis, the Kähler cone will not correspond to $t_{\tilde{\imath}} \ge 0$, as used earlier. In general the Kähler cone is a subset thereof, which requires a proper redefinition of the parameters. \rightarrow Yet to be done...

ţ

A generic and *efficient* Swiss Cheese identification algorithm is much harder to obtain than originally anticipated.

- 1. Redefine the basis / Kähler parameters, such that the basis divisors are effective and $t_{\tilde{i}} \ge 0$ corresponds to the Kähler cone.
- 2. Test if the prior outlined equation system is solveable.

Outlook

Some further question:

- How generic is the Swiss Cheese condition in the landscape?
- Check if the small 4-cycles are del Pezzo.
- Study implications for inflation scenarios.
- What about D-term potentials / open string sector.
- Study hierarchy implications.

The Alternate Swiss Cheese Landscape

