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The Issue of Moduli Stabilization

6

2

2

16

RL

To make contact with the observed world,
10d string theory needs to be compactified
down to 4d.
Ù Various choices for 6d internal space
(topology, curvature, complex structure, ...)

Most common:
Compact Calabi-Yau threefolds
(complex Ricci-flat Kähler manifolds
with SU(3) holonomy/structure group)

Focus here: type IIB string theory
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Unstabilized Moduli?

Calabi-Yau geometries have h1,1 Kähler moduli and h2,1 complex
structure moduli. Plus there is the type-IIB axio-dilaton modulus S.

What happens to unstabilized moduli?
Compactification leaves effective 4d N=1 supersymmetric theory.
Moduli fields appear as the massless scalar bosons in chiral superfields.

Ù Left “unstabilized” those massless superfields have no potential
and would lead to 5th force effects or missing energy in colliders.

Not observed in nature! Ù Moduli must be stabilized!
Ù

General idea:
Use fluxes to generate a potential and a nonzero vev for moduli.
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Effective Type IIB theory

The IIB theory’s effective 4d N=1 Kähler potential takes the form

K = − log(S + S̄)− log

(
−i

∫
X

Ω3 ∧ Ω̄3

)
− 2 log

(
V̂ +

ξ

2g
3
2
s

)

where (α′)3 string (but no loop!) corrections enter via the ξ, i.e.

ξ = −χ(X )
ζ(3)

2(2π)3

Important: If the α′ corrections are ignored (letting ξ → 0),
the associated Kähler metric Kαβ = ∂α∂βK is block-diagonal
with respect to the three moduli types Uk, Ti and S.

Ù Assumed in the KKLT moduli stabilization scenario.
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The KKLT Scenario
Using fluxes F3 = dC2 and H3 = dB2, consider the

Gukov-Vafa-Witten
superpotential:

WGVW =

∫
X

Ω3 ∧G3, G3 = F̄3 − iSH̄3︸ ︷︷ ︸
G3-flux

Ù

F-terms

The associated F-term potential VF can be brought into the form

VF = eK
(
K−1
UŪ
FU F̄Ū +K−1

SS̄
FSF̄S̄

)
.

which does not depend on the Kähler moduli (cancellation due to the
block-diagonal form of the (inverse) Kähler metric since α′ corrections
are neclected).

[Kachru-Kallosh-Linde-Trivedi 2003]
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The KKLT Scenario

Minimizing VF therefore only fixes the complex structure moduli and
axio-dilaton. What about the Kähler moduli?

In addition to WGVW, the superpotential W also involves
non-perturbative contributions from e.g. E3-brane instantons:

Wnp =
∑
ρ

Aρ(U
k, S)e−aρTρ where Tρ =

h1,1(X )∑
i=1

mi
ρTi

Here Aρ(U
k, S) are treshold prefactors and

the coefficients aρ determine the type of the contribution.

Define W0 = WGVW|min to be the minimum of the GVW
superpotential for fixed complex structure moduli and axio-dilaton.
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The KKLT Scenario
Consider the full superpotential W = W0 +

∑
ρ

Aρ(U
k, S)e−aρTρ .

Ù

associated F-term potential: VF = eK
(
K−1
T T̄
FT F̄T̄ − 3|W |2

)
Minimizing this potential stabilizes the Kähler moduli as well.

So, in KKLT we have a two-step moduli stabilization:

1. Stabilize the complex structure and axio-dilaton by the
Gukov-Vafa-Witten superpotential, i.e. via G3-flux.

2. Then consider the non-perturbative contributions as a perturbation
around this minimum and stabilize the Kähler structure.

Ù

Rather artificial... can we improve this?
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The LARGE Volume Scenario

Idea: Consider the V-dependency of the KKLT approach.

By taking the overall volume V large, we have 1
V � 1 such that we

can expand in the inverse volume. We are now taking the full
superpotential:

W =

∫
X

Ω3 ∧G3 +
∑
ρ

Aρ(U
k)e−aρTρ

Ù

The expansion of the VF contributions in 1
V shows the following:

� K−1
UŪ
FU F̄Ū ∼ O( 1

V0 )

� K−1
SS̄
FSF̄S̄ ∼ O( 1

V0 )

� K−1
ST̄
FSF̄T̄ ∼ O( 1

V1 )

� K−1
T T̄
FT F̄T̄ − 3|W |2 ∼ O( 1

V1 )
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The LARGE Volume Scenario

To leading order we then obtain the F-term potential:

VF = eK
(
K−1
UŪ
FU F̄Ū +K−1

SS̄
FSF̄S̄

)
+O( 1

V3 )

Ù

Same potential as in the 1st KKLT step!
(and only the WGVW part of W contributes)

Once again use W0 = WGVW|min to stabilize Uk and S. The O( 1
V3 )

term of VF as a perturbation then stabilizes the Ti moduli.

Ù The benefit of the LARGE Volume Scenario is therefore a
V-controlled separation of the two moduli stabilization steps.
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Geometric prerequisites
In order for the LARGE Volume Scenario to work out, we have a
number of requirements for the geometry of the Calabi-Yau:

� We require a number of (small) 4-cycles that can be wrapped by
E3-branes to generate the non-perturbative contributions for the
2nd Kähler moduli stabilization step.

� At the same time, the overall geometry V must be able to scale to
large values to allow for the 2-step approach. This requires at least
one (large) 4-cycle that can be scaled to large values.

Ù

V ∼ τL
3
2 −

Nsmall∑
i=1

τsi

3
2 Large cycle

Small cycles

Large cycleSmall cycles
Large cycle

Small cycles

Swiss Cheese geometry
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The LARGE Volume Scenario Claim
X Calabi-Yau threefold, D1, . . . , Dn ⊂ X divisors, τi := vol(Di)

LARGE Volume Scenario Claim: Let the limit be taken as

LV Limit:

{
τ1, . . . , τNsmall

remain small

V → ∞ for τNsmall+1, . . . , τh1,1(X ) →∞
Large cycle

Small cycles

such that the Kähler potential K and the superpotential W in
type IIB N=1 4d SUGRA

K = 〈Kcs〉 − 2 ln
(
V̂ + ξ̂

)
, W = 〈WGVW〉+

Nsmall∑
i=1

Ai(S,Uj)e
−aiTi

Then the scalar potential V admits a set of AdS non-SUSY minima.

[Cicoli-Conlon-Quevedo 2008]

12 of 26



The Goal

Not too many geometries known...

Ù

Develop an algorithmic approach to
identify the Swiss Cheese property
in a given Calabi-Yau threefold.
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Step 0: What do we have?

Formulation in the LVS Claim:

LV Limit:

{
τ1, . . . , τNsmall

remain small

V → ∞ for τNsmall+1, . . . , τh1,1(X ) →∞

Ù

Implied starting assumption: We are in a “convenient” basis!
...means that the divisor basis can be directly split up into

D1, . . . , Dn = DL1 , . . . , DLnL︸ ︷︷ ︸
large cycle divisors

, Ds1 , . . . , Dsns︸ ︷︷ ︸
small cycle divisors

Ù Computationally, that’s the most oversimplifying assumption ever!
“Manifest Swiss Cheese”
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Step 1: Reformulate Large Volume Limit
4-cycle volumes τi

Poincaré←−−−−−−−→ Kähler parameters ti

Central idea: Rewrite LVL in terms of Kähler parameters ti!

intersection form matrix on divisor Di: (κ(i))jk := κijk

divisor 4-cycle volume: τi =
1

2
κijkt

jtk =
1

2
~t∗κ(i)

~t

split Kähler parameter vector: ~t =

nL∑
A=1

λA~tLA︸ ︷︷ ︸
large

+

ns∑
a=1

γa~tsa︸ ︷︷ ︸
small

∈ K
Ù

In the LVL claim V → ∞ where τNsmall+1, . . . , τh1,1(X ) →∞ then
corresponds to λA →∞.
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Step 1: Reformulate Large Volume Limit

What does small and large mean in terms of the Kähler parameters?

τi =
1

2

[ terms involving large parameters λA︷ ︸︸ ︷
λAλB · (~t∗LAκ(i)

~tLB ) + 2λAγb · (~t∗LAκ(i)
~tsb) +γaγb ·(~t∗saκ(i)

~tsb)
]

Ù
large 4-cycles τI : ~t∗LAκ(I)

~tLB 6= 0 OR ~t∗LAκ(I)
~tsb 6= 0

small 4-cycles τα: ~t∗LAκ(α)
~tLB = 0 AND ~t∗LAκ(α)

~tsb = 0︸ ︷︷ ︸
κ(α)

~tLA = 0
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Step 1: Reformulate Large Volume Limit
Blowup mode condition of the inverse Kähler metric: K−1

αα ∼ V
√
τα

For a general Calabi-Yau manifold there is a K−1
ij expansion

K−1
ij = −2

9

(
2V + ξ̂

)
κijkt

k +
4V − ξ̂
V − ξ̂

τiτj

= −4

9
Vκijktk + 4τiτj +O( 1

V1 )

Ù
K−1
αα

V
≈ −4

9
κααit

i = −4

9
(κ(α)

~t)α ∼
√
τα =

√
~t∗κ(α)

~t

κ(α)
~tLA = 0 Ù RHS only depends on small cycle volumes ~tsα .

Ù requires (κ(α)
~tsa)α 6= 0 for at least one a
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Step 1: Reformulate Large Volume Limit

Furthermore, the ~tLA and ~tsa have to be a basis (due to Poincaré)

det
(
~tL1 , . . . ,~tLNlarge

,~ts1 , . . . ,~tsNsmall

)
6= 0,

which automatically takes care of the large cycles.
Also ~t has to be in the Kähler cone K

Kρi
(
λA(~tLA)i + γa(~tsa)i

)
> 0

Large cycle
Small cycles

Large cycleSmall cycles
Large cycle

Small cycles
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Step 1: Reformulated Large Volume Limit

With respect to a “convenient” basis we ultimately need to test if
small cycles: κ(α)

~tLA = 0

K−1
αα condition: (κ(α)

~tsa)α 6= 0

non-triviality: det(~tL1 , . . . ,~tLNlarge
,~ts1 , . . . ,~tsNsmall

) 6= 0

Kähler cone: Kρi
(
λA(~tLA)i + γa(~tsa)i

)
> 0

has a solution, solving for all ~tLA , ~tsa , λA and γa.

Note that in this equation system only the κ(i)s are
coordinate-dependant.
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Step 2: Arbitrary basis considerations

Life is hard... and most bases are rather inconvenient...

Let D̃1̃, . . . , D̃ñ be a generic basis and Ai
̃ a base change matrix

relating to the convenient basis D1, . . . , Dn.

small cycles: Aα
̃κ(̃)

~tLA = 0

K−1
αα condition: Aα

ı̃Aα
̃(κ(ı̃)

~tsa)̃ 6= 0

non-triviality: det(~tL1 , . . . ,~tLNlarge
,~ts1 , . . . ,~tsNsmall

) 6= 0

Kähler cone: in a moment...

base change: det(A) 6= 0
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Step -1: Kähler cone normalization

general Kähler cone condition:
h1,1∑
i=1

Kκiti ≥ 0 for κ = 1, . . . , nF

Kähler cone simplicial Ù nF = h1,1 Ù K invertible matrix

Transform intersection form and Kähler cone to standard form via

D̂ı̂ =
∑
i

D̂i(K−1)iı̂,

t̂ı̂ =
∑
i

Kı̂iti,

κ̂ı̂̂k̂ =
∑
i,j,k

κijk(K−1)iı̂(K−1)j ̂(K̂−1)kk̂.

Ù normalized Kähler cone: t̂ı̂ > 0
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Step 3: Final Swiss Cheese detector

Let D̃1̃, . . . , D̃ñ be a generic basis with a normalized Kähler cone.

small cycles: Aα
̃κ(̃)

~tLA = 0

K−1
αα condition: Aα

ı̃Aα
̃(κ(ı̃)

~tsa)̃ 6= 0

non-triviality: det(~tL1 , . . . ,~tLNlarge
,~ts1 , . . . ,~tsNsmall

) 6= 0

Kähler cone: λA(~tLA)ı̃ + γa(~tsa)ı̃ > 0

base change: det(A) 6= 0
Ù

Check the solvability of the system for A, ~tLA , ~tsa , λA and γa over R.

Ù Still a demanding task — 2(h1,1)2 + h1,1 variables — but doable!

22 of 26



Redundancy fixings
� h1,1 = 2: just implement the equation system in Mathematica and

brute-force FindInstance it.

� h1,1 ≥ 3: the inequality solver in Mathematica is way too slow.

Ù

Using redundancies in the variables, turn inequalities into equalities:

small cycles: Aα
̃κ(̃)

~tLA = 0

K−1
αα condition: Aα

ı̃Aα
̃(κ(ı̃)

~tsa)̃ 6= 0

non-triviality: det(~tL1 , . . . ,~tLNlarge
,~ts1 , . . . ,~tsNsmall

) = ±1

Kähler cone: λA(~tLA)ı̃ + γa(~tsa)ı̃ > 0

base change: det(A) =

{
1 for h1,1 even

±1 for h1,1 odd
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Actual implementation & application

� The K−1
αα condition is very non-restrictive and almost never rules

out a model for h1,1 > 2 Ù ignore it at first.

� In the end Mathematica is simply too slow. Along comes Singular!

Ù

� Using further redundancies, numerous components of the matrix A
and the vectors ~tLA , ~tsa can be fixed, reducing the number of
variables.

Ù

Identifying the right combination of “trickery” was the main effort...
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Actual implementation & application
Final implementation of the Swiss Cheese test:

1. Fix number of large / small cycles to test.

2. Compute dimension of Gröbner basis of the equation system

small cycles: Aα
̃κ(̃)

~tLA = 0

non-triviality: det(~tL1 , . . . ,~tLNlarge
,~ts1 , . . . ,~tsNsmall

) = ±1

base change: det(A) =

{
1 for h1,1 even

±1 for h1,1 odd

3. If non-negative, perform primary decomposition of Gröbner basis

4. Add Kähler cone condition and attempt to find solution over R
using Mathematica in at least one component.

5. Check K−1
αα condition from the result. Ù Swiss Cheese
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Outlook
So far & currently:

� Scanned h1,1 ≤ 4 for nlarge = 1, but test generalizes to nlarge > 1

h1,1 = 2 h1,1 = 3 h1,1 = 4

# polytopes: 36 244 1197

# triangulations: 39 306 5930

# simplicial Kähler cones: 39 266 3513

# Swiss Cheese mflds: 22 93 302

� Currently scanning h1,1 = 5, 6, 7, 8
� Also looking at strong vs. weak Swiss Cheese detection
� CICYs for h1,1 ≤ 4 are not Swiss Cheese, but may be for h1,1 ≥ 5

Ù Still a lot to discover in the Swiss Cheese landscape...
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