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The Issue of Moduli Stabilization S
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To make contact with the observed world,
10d string theory needs to be compactified
down to 4d.

= Various choices for 6d internal space
(topology, curvature, complex structure, ...)

Most common:

Compact Calabi-Yau threefolds
(complex Ricci-flat Kahler manifolds
with SU(3) holonomy/structure group)

Focus here: type IIB string theory




Unstabilized Moduli?

Calabi-Yau geometries have h»!' Kihler moduli and h%! complex
structure moduli. Plus there is the type-lIB axio-dilaton modulus S.

What happens to unstabilized moduli?
Compactification leaves effective 4d N'=1 supersymmetric theory.
Moduli fields appear as the massless scalar bosons in chiral superfields.

= Left “unstabilized” those massless superfields have no potential
and would lead to 5th force effects or missing energy in colliders.

Not observed in naturel = Moduli must be stabilized!

\

General idea:
Use fluxes to generate a potential and a nonzero vev for moduli.
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Effective Type IIB theory =

The IIB theory’s effective 4d N'=1 Kahler potential takes the form

K:—log(S—kS’)—log(—i/ Qg/\Qg)-QlOg v+ 63
X 293

where (/)2 string (but no loop!) corrections enter via the &, i.e.

Important: If the o’ corrections are ignored (letting & — 0),

the associated Kahler metric K,3 = 0,03K is block-diagonal
with respect to the three moduli types U, T; and S.

= Assumed in the KKLT moduli stabilization scenario.
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The KKLT Scenario S

Using fluxes F3 = dC5 and Hs = d B3, consider the

Gukov-Vafa-Witten
superpotential:

Wavw = / Q3 NG3, Gz= F3—15H3
G3 flux
} F-terms

The associated F-term potential Vx can be brought into the form
Vi = o (K LFyFy + Ky FSFS>

which does not depend on the Kahler moduli (cancellation due to the
block-diagonal form of the (inverse) Kihler metric since o/ corrections
are neclected).

[Kachru-Kallosh-Linde-Trivedi 2003]
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The KKLT Scenario S

Minimizing Vi therefore only fixes the complex structure moduli and
axio-dilaton. What about the Kahler moduli?

In addition to Wayw, the superpotential W also involves
non-perturbative contributions from e.g. E3-brane instantons:

hb1(X)
Whp = Z Ap(Uk, S)e*“PTf' where T, = Z m;TZ—
P i=1

Here A,(U*,S) are treshold prefactors and
the coefficients a, determine the type of the contribution.

Define Wy = Wgyw|min to be the minimum of the GVW
superpotential for fixed complex structure moduli and axio-dilaton.
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The KKLT Scenario

Consider the full superpotential W = Wy + Z Ap(Uk, S)e’“PTP.
p
\
associated F-term potential: V; = e (K;TFTFT - 3|W|2>
Minimizing this potential stabilizes the Kahler moduli as well.

So, in KKLT we have a two-step moduli stabilization:

1. Stabilize the complex structure and axio-dilaton by the
Gukov-Vafa-Witten superpotential, i.e. via G3-flux.

2. Then consider the non-perturbative contributions as a perturbation
around this minimum and stabilize the Kahler structure.

\

Rather artificial... can we improve this?
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The LARGE Volume Scenario S

Idea: Consider the V-dependency of the KKLT approach.

By taking the overall volume V large, we have % < 1 such that we
can expand in the inverse volume. We are now taking the full
superpotential:

W = / Q3 A Gs + ZAp(Uk)e_“PTP
X
p

¥
The expansion of the Vi contributions in % shows the following:
" K FuFy ~O(y) = KgpFsFr~O(yr)
" KgiFsFs~O(gs) = KpFrEp—3[W° ~ O(5r)
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The LARGE Volume Scenario

To leading order we then obtain the F-term potential:
Vi = o (KL FyFy + KGLFsFs) + O(5h)

\

Same potential as in the 1st KKLT step!
(and only the Wagyw part of W contributes)

Once again use Wy = Wayw |min to stabilize U* and S. The (’)(%)
term of Vp as a perturbation then stabilizes the T; moduli.

= The benefit of the LARGE Volume Scenario is therefore a
V-controlled separation of the two moduli stabilization steps.
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Geometric prerequisites

In order for the LARGE Volume Scenario to work out, we have a
number of requirements for the geometry of the Calabi-Yau:

m We require a number of (small) 4-cycles that can be wrapped by
E3-branes to generate the non-perturbative contributions for the
2nd Kahler moduli stabilization step.

B At the same time, the overall geometry V must be able to scale to
large values to allow for the 2-step approach. This requires at least
one (large) 4-cycle that can be scaled to large values.

N; small

3 3
Ve~12 — E Ts; 2
i=1

@
. Small cycles N
N Large cycle’

Swiss Cheese geometry
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The LARGE Volume Scenario Claim S
X Calabi-Yau threefold, Dy, ..., D, C X divisors, 7; := vol(D;)
LARGE Volume Scenario Claim: Let the limit be taken as

LV Limit: Tly-ws TN,y Femain small
V = 00 for TN +1s - -+ s TR (x) — OO

such that the Kahler potential K and the superpotential W in
type 1B N'=1 4d SUGRA

Nsmall
K = (Ke) —2In (V + 5) , W= Wgvw) + ZAi(S’ Uj)ef‘”T"
i=1
Then the scalar potential V' admits a set of AdS non-SUSY minima.

[Cicoli-Conlon-Quevedo 2008]
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e
The Goal Y

Not too many geometries known...

\

Develop an algorithmic approach to
identify the Swiss Cheese property
in a given Calabi-Yau threefold.
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Step 0: What do we have? 2

Formulation in the LVS Claim:

LV Limit: Tly s TN, Femain small
V = 00 for TN 415 -+ s TR11(x) — OO

Implied starting assumption: We are in a ‘“convenient” basis!
...means that the divisor basis can be directly split up into

Di,....Dy=Dy,,....Dy, . Dy,....,D

’ Sng
>

large cycle divisors small cycle divisors

= Computationally, that's the most oversimplifying assumption ever!
“Manifest Swiss Cheese”
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Step 1. Reformulate Large Volume Limit ”2-3

Poincaré .. ;
4-cycle volumes 7; ¢<———— Kahler parameters ¢’

Central idea: Rewrite LVL in terms of Kihler parameters ¢'!

intersection form matrix on divisor D;: (/Q(i))jk = Kijk
. 1 T
divisor 4-cycle volume: 7, = iﬁijktjt = 51& Kyt

ny, Ng
split Kahler parameter vector: i= Z AAfLA + Z%{sa ek

A=1 a=1
—_—— ——
large small
\
In the LVL claim V — oo where 7y 41, .., Tp11(x) — 00 then

corresponds to A4 — oo.
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Step 1. Reformulate Large Volume Limit Y

What does small and large mean in terms of the Kahler parameters?

terms involving large parameters \ 4
7N\

1 — - L
Ti = §[>\A>\B (tLA/*”v(z‘)tLB)Jr?)\A%'@Aﬁ(i)tsb)+7a7b'(tsa/<(i)tsb)}

¥
large 4-cycles 77: E%:AH(I){LB #0 OR t_iAn(I)fsb #0
small 4-cycles 7,: %A"i(a){LB =0 AND FiAn(a)t_;b =0

~~

/i(a)fLA =0

16 of 26
EEEEE————————————————————————



Qe

-

Step 1. Reformulate Large Volume Limit é

Blowup mode condition of the inverse Kahler metric: K} ~ V\/7,
For a general Calabi-Yau manifold there is a KZ-;I expansion

2 . 4y — £
Ki;1 = —§ <2V + f) Hijktk -+ V?Ti’rj
4 k 1
= —§V"<vijkt +4m7j + O(31)
\

K. 4 4 Z -
](})za ~ _§’i'focozitZ = _§(”(a)£)a ~ \/7—>a = t*ﬁ'(a)t

ﬁ(a)fLA =0 = RHS only depends on small cycle volumes t_;a.

=> requires (n(a)fsa)a # 0 for at least one a
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Step 1: Reformulate Large Volume Limit ﬂé

Furthermore, the 71, and f;, have to be a basis (due to Poincaré)

det (tLl, ST ,tSNsmn> 40,

which automatically takes care of the large cycles.
Also ¢ has to be in the Kahler cone K

o=

! Small cycles
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Step 1. Reformulated Large Volume Limit Y

With respect to a “convenient” basis we ultimately need to test if

small cycles: f@(a)fLA =0

K} condition: (/i(a)t_;a)a #0

non-triviality: det(le, .. ,fLNl ,t_;l, e ,f;N H) #0
arge sma.

Kahler cone:  Ki(Aa(fL,)" +7a(F,)?) >0

has a solution, solving for all FLA, f;a, A4 and v,.

Note that in this equation system only the ;s are
coordinate-dependant.
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Step 2: Arbitrary basis considerations S

Life is hard... and most bases are rather inconvenient...

Let 151, e ,Dﬁ be a generic basis and A;/ a base change matrix

7

relating to the convenient basis D1, ..., D,,.
small cycles: Aajn(j)fLA =0
K} condition: AaiAaj(n(;)t_;a)j #0
non-triviality: det(fy,,, ... ,fLNl Loy tay H) #0
arge sma.
Kahler cone: in a moment...
base change: det(A) #0
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Step -1: K&hler cone normalization N

hl,l
general Kahler cone condition: ZIC”iti >0 fork=1,...,np
i=1

K3ihler cone simplicial = np = h! = I invertible matrix

Transform intersection form and Kahler cone to standard form via
D=3 Dty
i
-3,
K1 (K 1yk
2]k ZK’Uk Zi )Jj(’C ) k-

1,5,k

— normalized Kihler cone: ¥ > 0
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Step 3: Final Swiss Cheese detector Z}

Let Di, ..., Ds be a generic basis with a normalized Kahler cone.

small cycles:
-1 .
K, condition:
non-triviality:
Kahler cone:

base change:

det(t_iq) Y _’LNlarge t_;17 ’ _;Nsmall) # O
AA(fLA)i + ’Ya(t_éa)i >0
det(A) # 0

i

Check the solvability of the system for A, fLA, fs,,,. A4 and 7y, over R.

= Still a demanding task — 2(h''1)2 4 h1:! variables — but doable!
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Redundancy fixings Nt

m pb1 = 2: just implement the equation system in Mathematica and
brute-force FindInstance it.

m 4Ll > 3: the inequality solver in Mathematica is way too slow.

\

Using redundancies in the variables, turn inequalities into equalities:
small cycles: Aajm(j)fLA =0

K;O% condition: AaiAaj(/‘&(z)t_'sa)j # 0

non-triviality: det(ty,, ... ,fLNl oy tay
arge

)= £1

small

Kihler cone:  Au(fL,)' +7a(f,)’ > 0

1 for B!
base change: det(A) = or even
+1 for k1! odd

\
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Actual implementation & application N 7

® The K} condition is very non-restrictive and almost never rules
out a model for A! > 2 = ignore it at first.

® In the end Mathematica is simply too slow. Along comes Singular!

sl SINGULAR <

® Using further redundancies, numerous components of the matrix A
and the vectors 11, ,, 15, can be fixed, reducing the number of
variables.

\

Identifying the right combination of “trickery” was the main effort...
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Actual implementation & application

Final implementation of the Swiss Cheese test:

1. Fix number of large / small cycles to test.

2. Compute dimension of Grobner basis of the equation system
small cycles: Aajﬁ(j)FLA =0

—

non-triviality: det(le,...,fLNl oy tay
arge

small) = :l:l
{1 for ht'1 even

base change: det(A) =
& D=1 41 for h1 odd
3. If non-negative, perform primary decomposition of Grobner basis

4. Add Kahler cone condition and attempt to find solution over R
using Mathematica in at least one component.

5. Check K} condition from the result. => Swiss Cheese
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Outlook

So far & currently:

® Scanned Al < 4 for Nlarge = 1, but test generalizes to njapge > 1

hl,l =92 hl,l =3 hl’l =4

# polytopes:
# triangulations:
# simplicial Kahler cones:
# Swiss Cheese mflds:

36
39
39
22

244
306
266
93

1197
5930
3513
302

m Currently scanning h'"! =5,6,7,8

m Also looking at strong vs. weak Swiss Cheese detection
m CICYs for h''! < 4 are not Swiss Cheese, but may be for hbl > 5

= Still a lot to discover in the Swiss Cheese landscape...
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