

Benjamin Jurke

Northeastern University Boston, MA (USA)

— Jul 18, 2012 —

Outline

- 1. The Large Volume Scenario
- 2. Swiss Cheese reformulated
- 3. Scan Implementation

The Issue of Moduli Stabilization

To make contact with the observed world, 10d string theory needs to be compactified down to 4d.

→ Various choices for 6d internal space (topology, curvature, complex structure, ...)

Most common:

Compact Calabi-Yau threefolds (complex Ricci-flat Kähler manifolds

with SU(3) holonomy/structure group)

Focus here: type IIB string theory

Calabi-Yau geometries have $h^{1,1}$ Kähler moduli and $h^{2,1}$ complex structure moduli. Plus there is the type-IIB axio-dilaton modulus S.

What happens to unstabilized moduli? Compactification leaves effective 4d $\mathcal{N}{=}1$ supersymmetric theory. Moduli fields appear as the massless scalar bosons in chiral superfields.

 \rightarrow Left "unstabilized" those massless superfields have no potential and would lead to 5th force effects or missing energy in colliders.

Not observed in nature!

Moduli must be stabilized!

ţ

General idea:

Use fluxes to generate a potential and a nonzero vev for moduli.

Effective Type IIB theory

The IIB theory's effective 4d $\mathcal{N}{=}1$ Kähler potential takes the form

$$K = -\log(S + \bar{S}) - \log\left(-i\int_{\mathcal{X}}\Omega_3 \wedge \bar{\Omega}_3\right) - 2\log\left(\hat{\mathcal{V}} + \frac{\xi}{2g_s^{\frac{3}{2}}}\right)$$

where $(\alpha')^3$ string (but no loop!) corrections enter via the ξ , i.e.

$$\xi = -\chi(\mathcal{X}) \frac{\zeta(3)}{2(2\pi)^3}$$

Important: If the α' corrections are ignored (letting $\xi \to 0$), the associated **Kähler metric** $K_{\alpha\beta} = \partial_{\alpha}\partial_{\beta}K$ is block-diagonal with respect to the three moduli types U^k , T_i and S.

→ Assumed in the KKLT moduli stabilization scenario.

The KKLT Scenario

Using fluxes $F_3 = dC_2$ and $H_3 = dB_2$, consider the

Gukov-Vafa-Witten
superpotential:
$$W_{\text{GVW}} = \int_{\mathcal{X}} \Omega_3 \wedge G_3, \quad \underbrace{G_3 = \bar{F}_3 - iS\bar{H}_3}_{G_3-\text{flux}}$$

 \downarrow F-terms

The associated F-term potential V_F can be brought into the form

$$V_F = e^K \left(K_{U\bar{U}}^{-1} F_U \bar{F}_{\bar{U}} + K_{S\bar{S}}^{-1} F_S \bar{F}_{\bar{S}} \right).$$

which does not depend on the Kähler moduli (cancellation due to the block-diagonal form of the (inverse) Kähler metric since α' corrections are neclected).

Minimizing V_F therefore only fixes the complex structure moduli and axio-dilaton. What about the Kähler moduli?

In addition to W_{GVW} , the superpotential W also involves **non-perturbative contributions** from e.g. E3-brane instantons:

$$W_{\rm np} = \sum_{\rho} A_{\rho}(U^k, S) e^{-a_{\rho}T_{\rho}} \quad \text{where} \quad T_{\rho} = \sum_{i=1}^{h^{1,1}(\mathcal{X})} m_{\rho}^i T_i$$

Here $A_{\rho}(U^k,S)$ are treshold prefactors and the coefficients a_{ρ} determine the type of the contribution.

Define $W_0 = W_{\text{GVW}}|_{\text{min}}$ to be the minimum of the GVW superpotential for fixed complex structure moduli and axio-dilaton.

The KKLT Scenario

Consider the full superpotential $W=W_0+\sum_{\rho}A_{\rho}(U^k,S){\rm e}^{-a_{\rho}T_{\rho}}.$ I

associated F-term potential: $V_F = e^K \left(K_{T\bar{T}}^{-1} F_T \bar{F}_{\bar{T}} - 3|W|^2 \right)$ Minimizing this potential stabilizes the Kähler moduli as well.

So, in KKLT we have a two-step moduli stabilization:

- 1. Stabilize the complex structure and axio-dilaton by the Gukov-Vafa-Witten superpotential, i.e. via G_3 -flux.
- 2. Then consider the non-perturbative contributions as a perturbation around this minimum and stabilize the Kähler structure.

ţ

Rather artificial... can we improve this?

The LARGE Volume Scenario

Idea: Consider the $\boldsymbol{\mathcal{V}}\text{-}dependency}$ of the KKLT approach.

By taking the overall volume \mathcal{V} large, we have $\frac{1}{\mathcal{V}} \ll 1$ such that we can expand in the inverse volume. We are now taking the full superpotential:

$$W = \int_{\mathcal{X}} \Omega_3 \wedge G_3 + \sum_{\rho} A_{\rho}(U^k) \mathrm{e}^{-a_{\rho} T_{\rho}}$$

The expansion of the V_F contributions in $\frac{1}{V}$ shows the following:

$$\begin{array}{ll} & K_{U\bar{U}}^{-1}F_U\bar{F}_{\bar{U}}\sim\mathcal{O}(\frac{1}{\mathcal{V}^0}) & \qquad \mathbf{I} \quad K_{S\bar{T}}^{-1}F_S\bar{F}_{\bar{T}}\sim\mathcal{O}(\frac{1}{\mathcal{V}^1}) \\ & \mathbf{I} \quad K_{S\bar{S}}^{-1}F_S\bar{F}_{\bar{S}}\sim\mathcal{O}(\frac{1}{\mathcal{V}^0}) & \qquad \mathbf{I} \quad K_{T\bar{T}}^{-1}F_T\bar{F}_{\bar{T}}-3|W|^2\sim\mathcal{O}(\frac{1}{\mathcal{V}^1}) \end{array}$$

To leading order we then obtain the F-term potential:

$$V_F = \mathrm{e}^K \left(K_{U\bar{U}}^{-1} F_U \bar{F}_{\bar{U}} + K_{S\bar{S}}^{-1} F_S \bar{F}_{\bar{S}} \right) + \mathcal{O}(\frac{1}{\mathcal{V}^3})$$

$$\downarrow$$

Same potential as in the 1st KKLT step! (and only the W_{GVW} part of W contributes)

Once again use $W_0 = W_{\text{GVW}}|_{\text{min}}$ to stabilize U^k and S. The $\mathcal{O}(\frac{1}{\mathcal{V}^3})$ term of V_F as a perturbation then stabilizes the T_i moduli.

→ The benefit of the LARGE Volume Scenario is therefore a \mathcal{V} -controlled separation of the two moduli stabilization steps.

Geometric prerequisites

In order for the LARGE Volume Scenario to work out, we have a number of **requirements for the geometry of the Calabi-Yau**:

- We require a number of (small) 4-cycles that can be wrapped by E3-branes to generate the non-perturbative contributions for the 2nd Kähler moduli stabilization step.
- At the same time, the overall geometry V must be able to scale to large values to allow for the 2-step approach. This requires at least one (large) 4-cycle that can be scaled to large values.

T

Swiss Cheese geometry

The LARGE Volume Scenario Claim

 $\mathcal X$ Calabi-Yau threefold, $D_1, \ldots, D_n \subset \mathcal X$ divisors, $\tau_i := \operatorname{vol}(D_i)$

LARGE Volume Scenario Claim: Let the limit be taken as

$$\begin{array}{ll} \text{LV Limit:} & \left\{ \begin{array}{l} \tau_1, \dots, \tau_{N_{\text{small}}} \text{ remain small} \\ \mathcal{V} \to \infty \text{ for } \tau_{N_{\text{small}}+1}, \dots, \tau_{h^{1,1}(\mathcal{X})} \to \infty \end{array} \right. \end{array}$$

such that the Kähler potential K and the superpotential W in type IIB $\mathcal{N}{=}1~\mathrm{4d}~\mathrm{SUGRA}$

$$K = \langle K_{\rm cs} \rangle - 2 \ln \left(\hat{\mathcal{V}} + \hat{\xi} \right), \quad W = \langle W_{\rm GVW} \rangle + \sum_{i=1}^{N_{\rm small}} A_i(S, U_j) e^{-a_i T_i}$$

Then the scalar potential V admits a set of AdS non-SUSY minima.

[Cicoli-Conlon-Quevedo 2008]

12 of 26

The Goal

Not too many geometries known...

ţ

Develop an **algorithmic approach to identify the Swiss Cheese property** in a given Calabi-Yau threefold.

Step 0: What do we have?

Formulation in the LVS Claim:

$$\begin{array}{ll} \text{LV Limit:} & \left\{ \begin{array}{l} \tau_1, \ldots, \tau_{N_{\text{small}}} \text{ remain small} \\ \mathcal{V} \to \infty \text{ for } \tau_{N_{\text{small}}+1}, \ldots, \tau_{h^{1,1}(\mathcal{X})} \to \infty \end{array} \right. \\ & \downarrow \end{array}$$

Implied starting assumption: We are in a *"convenient"* basis! ...means that the divisor basis can be directly split up into

$$D_1, \dots, D_n = \underbrace{D_{L_1}, \dots, D_{L_{n_L}}}_{\text{large cycle divisors}}, \underbrace{D_{s_1}, \dots, D_{s_{n_s}}}_{\text{small cycle divisors}}$$

➤ Computationally, that's the most oversimplifying assumption ever! "Manifest Swiss Cheese"

Step 1: Reformulate Large Volume Limit

4-cycle volumes $\tau_i \xleftarrow{\text{Poincaré}} \text{K\"ähler parameters } t^i$

Central idea: Rewrite LVL in terms of Kähler parameters t^i !

intersection form matrix on divisor D_i : $(\kappa_{(i)})_{jk} := \kappa_{ijk}$ divisor 4-cycle volume: $\tau_i = \frac{1}{2}\kappa_{ijk}t^jt^k = \frac{1}{2}\vec{t}^*\kappa_{(i)}\vec{t}$ split Kähler parameter vector: $\vec{t} = \sum_{\substack{A=1 \\ \text{large}}}^{n_L} \lambda_A \vec{t}_{L_A} + \sum_{\substack{a=1 \\ \text{small}}}^{n_s} \gamma_a \vec{t}_{s_a} \in \mathcal{K}$

In the LVL claim $\mathcal{V} \to \infty$ where $\tau_{N_{\text{small}}+1}, \ldots, \tau_{h^{1,1}(\mathcal{X})} \to \infty$ then corresponds to $\lambda_A \to \infty$.

What does small and large mean in terms of the Kähler parameters?

$$\tau_{i} = \frac{1}{2} \left[\overbrace{\lambda_{A}\lambda_{B} \cdot (\vec{t}_{L_{A}}^{*}\kappa_{(i)}\vec{t}_{L_{B}}) + 2\lambda_{A}\gamma_{b} \cdot (\vec{t}_{L_{A}}^{*}\kappa_{(i)}\vec{t}_{s_{b}})}^{\mathsf{terms involving large parameters }\lambda_{A}} + \gamma_{a}\gamma_{b} \cdot (\vec{t}_{s_{a}}^{*}\kappa_{(i)}\vec{t}_{s_{b}}) \right]$$

$$\downarrow$$

$$\mathsf{large 4-cycles }\tau_{I}: \qquad \vec{t}_{L_{A}}^{*}\kappa_{(I)}\vec{t}_{L_{B}} \neq 0 \quad \mathsf{OR} \quad \vec{t}_{L_{A}}^{*}\kappa_{(I)}\vec{t}_{s_{b}} \neq 0$$

$$\mathsf{small 4-cycles }\tau_{\alpha}: \qquad \vec{t}_{L_{A}}^{*}\kappa_{(\alpha)}\vec{t}_{L_{B}} = 0 \quad \mathsf{AND} \quad \vec{t}_{L_{A}}^{*}\kappa_{(\alpha)}\vec{t}_{s_{b}} = 0$$

$$\kappa_{(\alpha)}\vec{t}_{L_{A}} = 0$$

Step 1: Reformulate Large Volume Limit

Blowup mode condition of the inverse Kähler metric: $K_{\alpha\alpha}^{-1} \sim \mathcal{V}\sqrt{\tau_{\alpha}}$ For a general Calabi-Yau manifold there is a K_{ij}^{-1} expansion

$$\begin{split} K_{ij}^{-1} &= -\frac{2}{9} \left(2\mathcal{V} + \hat{\xi} \right) \kappa_{ijk} t^k + \frac{4\mathcal{V} - \hat{\xi}}{\mathcal{V} - \hat{\xi}} \tau_i \tau_j \\ &= -\frac{4}{9} \mathcal{V} \kappa_{ijk} t^k + 4\tau_i \tau_j + \mathcal{O}(\frac{1}{\mathcal{V}^1}) \end{split}$$

$$\frac{K_{\alpha\alpha}^{-1}}{\mathcal{V}} \approx -\frac{4}{9} \kappa_{\alpha\alpha i} t^i = -\frac{4}{9} (\kappa_{(\alpha)} \vec{t})_{\alpha} \sim \sqrt{\tau_{\alpha}} = \sqrt{\vec{t^*} \kappa_{(\alpha)} \vec{t}}$$

 $\kappa_{(\alpha)} \vec{t}_{L_A} = 0 \rightarrow \text{RHS only depends on small cycle volumes } \vec{t}_{\mathbf{s}_{\alpha}}.$ $\rightarrow \text{requires } (\kappa_{(\alpha)} \vec{t}_{\mathbf{s}_a})_{\alpha} \neq 0 \text{ for at least one } a$

Furthermore, the \vec{t}_{L_A} and \vec{t}_{s_a} have to be a basis (due to Poincaré)

$$\det\left(ec{t}_{\mathrm{L}_{1}},\ldots,ec{t}_{\mathrm{L}_{N_{\mathrm{large}}}},ec{t}_{\mathrm{s}_{1}},\ldots,ec{t}_{\mathrm{s}_{N_{\mathrm{small}}}}
ight)
eq 0,$$

which automatically takes care of the large cycles. Also \vec{t} has to be in the Kähler cone $\mathcal K$

$$\mathcal{K}^{\rho}{}_{i}\left(\lambda_{A}(\vec{t}_{\mathrm{L}_{A}})^{i}+\gamma_{a}(\vec{t}_{\mathrm{s}_{a}})^{i}\right)>0$$

Step 1: Reformulated Large Volume Limit

With respect to a "convenient" basis we ultimately need to test if

 $\begin{cases} \text{small cycles:} & \kappa_{(\alpha)}\vec{t}_{\mathrm{L}_{A}} = 0\\ K_{\alpha\alpha}^{-1} \text{ condition:} & (\kappa_{(\alpha)}\vec{t}_{\mathrm{s}a})_{\alpha} \neq 0\\ \text{non-triviality:} & \det(\vec{t}_{\mathrm{L}_{1}}, \dots, \vec{t}_{\mathrm{L}_{N_{\mathrm{large}}}}, \vec{t}_{\mathrm{s}1}, \dots, \vec{t}_{\mathrm{s}_{N_{\mathrm{small}}}}) \neq 0\\ \text{K\"ahler cone:} & \mathcal{K}^{\rho}{}_{i} \left(\lambda_{A}(\vec{t}_{\mathrm{L}_{A}})^{i} + \gamma_{a}(\vec{t}_{\mathrm{s}a})^{i}\right) > 0 \end{cases}$

has a solution, solving for all \vec{t}_{L_A} , \vec{t}_{s_a} , λ_A and γ_a .

Note that in this equation system only the $\kappa_{(i)}$ s are coordinate-dependant.

Life is hard... and most bases are rather inconvenient...

Let $\tilde{D}_{\tilde{1}}, \ldots, \tilde{D}_{\tilde{n}}$ be a **generic basis** and $A_i^{\tilde{j}}$ a base change matrix relating to the convenient basis D_1, \ldots, D_n .

 $\begin{cases} \text{small cycles:} & A_{\alpha}{}^{\tilde{\jmath}}\kappa_{(\tilde{\jmath})}\vec{t}_{\mathrm{L}_{A}} = 0\\ K_{\alpha\alpha}{}^{-1} \text{ condition:} & A_{\alpha}{}^{\tilde{\jmath}}A_{\alpha}{}^{\tilde{\jmath}}(\kappa_{(\tilde{\imath})}\vec{t}_{\mathrm{s}a})_{\tilde{\jmath}} \neq 0\\ \text{non-triviality:} & \det(\vec{t}_{\mathrm{L}_{1}},\ldots,\vec{t}_{\mathrm{L}_{N_{\mathrm{large}}}},\vec{t}_{\mathrm{s}_{1}},\ldots,\vec{t}_{\mathrm{s}_{N_{\mathrm{small}}}}) \neq 0\\ \text{K\"ahler cone:} & \text{in a moment...}\\ \text{base change:} & \det(A) \neq 0 \end{cases}$

Step -1: Kähler cone normalization

n:
$$\sum_{i=1}^{h^{1,1}} \mathcal{K}^{\kappa}{}_i t^i \geq 0$$
 for $\kappa = 1, \ldots, n_F$

Kähler cone simplicial \rightarrow $n_F = h^{1,1} \rightarrow \mathcal{K}$ invertible matrix

Transform intersection form and Kähler cone to standard form via

$$\begin{split} \hat{D}_{\hat{i}} &= \sum_{i} \hat{D}_{i} (\mathcal{K}^{-1})^{i}{}_{\hat{i}}, \\ \hat{t}^{\hat{i}} &= \sum_{i} \mathcal{K}^{\hat{i}}{}_{i} t^{i}, \\ \hat{\kappa}_{\hat{i}\hat{j}\hat{k}} &= \sum_{i,j,k} \kappa_{ijk} (\mathcal{K}^{-1})^{i}{}_{\hat{i}} (\mathcal{K}^{-1})^{j}{}_{\hat{j}} (\hat{\mathcal{K}}^{-1})^{k}{}_{\hat{k}}. \end{split}$$

→ normalized Kähler cone: $\hat{t}^i > 0$

Let $\tilde{D}_{\tilde{1}}, \ldots, \tilde{D}_{\tilde{n}}$ be a generic basis with a normalized Kähler cone.

 $\begin{cases} \text{small cycles:} & A_{\alpha}{}^{\tilde{j}}\kappa_{(\tilde{j})}\vec{t}_{\mathrm{L}_{A}} = 0\\ K_{\alpha\alpha}^{-1} \text{ condition:} & A_{\alpha}{}^{\tilde{i}}A_{\alpha}{}^{\tilde{j}}(\kappa_{(\tilde{i})}\vec{t}_{\mathrm{s}_{a}})_{\tilde{j}} \neq 0\\ \text{non-triviality:} & \det(\vec{t}_{\mathrm{L}_{1}},\ldots,\vec{t}_{\mathrm{L}_{N_{\mathrm{large}}}},\vec{t}_{\mathrm{s}_{1}},\ldots,\vec{t}_{\mathrm{s}_{N_{\mathrm{small}}}}) \neq 0\\ \text{Kähler cone:} & \lambda_{A}(\vec{t}_{\mathrm{L}_{A}})^{\tilde{i}} + \gamma_{a}(\vec{t}_{\mathrm{s}_{a}})^{\tilde{i}} > 0\\ \text{base change:} & \det(A) \neq 0 \end{cases}$

ţ

Check the solvability of the system for A, \vec{t}_{L_A} , \vec{t}_{s_a} , λ_A and γ_a over \mathbb{R} .

→ Still a demanding task $-2(h^{1,1})^2 + h^{1,1}$ variables — but doable!

Redundancy fixings

- h^{1,1} = 2: just implement the equation system in Mathematica and brute-force FindInstance it.
- $h^{1,1} \ge 3$: the inequality solver in Mathematica is way too slow.

Using redundancies in the variables, turn inequalities into equalities:

$$\begin{array}{ll} \mbox{small cycles:} & A_{\alpha}{}^{\tilde{\jmath}}\kappa_{(\tilde{\jmath})}\vec{t}_{{\rm L}_A}=0 \\ K_{\alpha\alpha}^{-1} \mbox{ condition:} & A_{\alpha}{}^{\tilde{\imath}}A_{\alpha}{}^{\tilde{\jmath}}(\kappa_{(\tilde{\imath})}\vec{t}_{{\rm s}_a})_{\tilde{\jmath}}\neq 0 \\ \mbox{non-triviality:} & \det(\vec{t}_{{\rm L}_1},\ldots,\vec{t}_{{\rm L}_{N_{\rm large}}},\vec{t}_{{\rm s}_1},\ldots,\vec{t}_{{\rm s}_{N_{\rm small}}})=\pm 1 \\ \mbox{K\"ahler \mbox{ cone:}} & \lambda_A(\vec{t}_{{\rm L}_A})^{\tilde{\imath}}+\gamma_a(\vec{t}_{{\rm s}_a})^{\tilde{\imath}}>0 \\ \mbox{base change:} & \det(A)=\begin{cases} 1 & \mbox{for }h^{1,1} \mbox{ even} \\ \pm 1 & \mbox{for }h^{1,1} \mbox{ odd} \end{cases} \end{array}$$

Actual implementation & application

- The $K_{\alpha\alpha}^{-1}$ condition is very non-restrictive and almost never rules out a model for $h^{1,1} > 2 \rightarrow$ ignore it at first.
- In the end Mathematica is simply too slow. Along comes Singular!

• Using further redundancies, numerous components of the matrix A and the vectors \vec{t}_{L_A} , \vec{t}_{s_a} can be fixed, reducing the number of variables.

ţ

Identifying the right combination of "trickery" was the main effort ...

24 of 26

Actual implementation & application

Final implementation of the Swiss Cheese test:

- 1. Fix number of large / small cycles to test.
- 2. Compute dimension of Gröbner basis of the equation system

$$\begin{cases} \text{small cycles:} & A_{\alpha}{}^{\tilde{j}}\kappa_{(\tilde{j})}\vec{t}_{\mathrm{L}_{A}} = 0 \\ \text{non-triviality:} & \det(\vec{t}_{\mathrm{L}_{1}},\ldots,\vec{t}_{\mathrm{L}_{N_{\mathrm{large}}}},\vec{t}_{\mathrm{s}_{1}},\ldots,\vec{t}_{\mathrm{s}_{N_{\mathrm{small}}}}) = \pm 1 \\ \text{base change:} & \det(A) = \begin{cases} 1 & \text{for } h^{1,1} \text{ even} \\ \pm 1 & \text{for } h^{1,1} \text{ odd} \end{cases}$$

- 3. If non-negative, perform primary decomposition of Gröbner basis
- 4. Add Kähler cone condition and attempt to find solution over $\mathbb R$ using Mathematica in at least one component.

5. Check $K_{\alpha\alpha}^{-1}$ condition from the result. \rightarrow Swiss Cheese ^{25 of 26}

Outlook

So far & currently:

• Scanned $h^{1,1} \leq 4$ for $n_{\text{large}} = 1$, but test generalizes to $n_{\text{large}} > 1$

	$h^{1,1} = 2$	$h^{1,1} = 3$	$h^{1,1} = 4$
# polytopes:	36	244	1197
# triangulations:	39	306	5930
# simplicial Kähler cones:	39	266	3513
# Swiss Cheese mflds:	22	93	302

- Currently scanning $h^{1,1} = 5, 6, 7, 8$
- Also looking at strong vs. weak Swiss Cheese detection
- \blacksquare CICYs for $h^{1,1} \leq 4$ are not Swiss Cheese, but may be for $h^{1,1} \geq 5$

 \rightarrow Still a lot to discover in the Swiss Cheese landscape...